BRAIN CONNECTS: Synaptic resolution whole-brain circuit mapping of molecularly defined cell types using a barcoded rabies virus

大脑连接:使用条形码狂犬病病毒对分子定义的细胞类型进行突触分辨率全脑电路图谱

基本信息

  • 批准号:
    10672786
  • 负责人:
  • 金额:
    $ 218.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

ABSTRACT Single-cell transcriptomics has revolutionized our understanding of neuronal diversity and enabled high-throughput characterization of molecular cell types across brain areas and species. We and others have pioneered multi- modal technologies such as Patch-seq and spatial transcriptomics to link molecularly-defined cell types with their physiology, cytomorphology, and anatomical features, but we still lack high-throughput, cost-effective methods that can provide comprehensive synaptic resolution wiring diagrams of entire mammalian brains and integrate these connectomes with molecularly defined cell types. We propose to further develop and validate Rabies Barcode Interaction Detection followed by sequencing (RaBID-seq) to enable high-throughput, scalable, and cost-effective mapping of brain-wide synaptic-level con- nectivity and transcriptomic profiling of the mapped neurons. We have optimized rabies virus production and packaging to achieve barcoded libraries containing more than 1.7 million unique barcodes, two orders of mag- nitude higher compared to prior studies, enough to map the inputs to thousands of post-synaptic neurons in a single animal. However, this technology still faces several experimental and computational challenges to realize its full potential. In Aim 1, we will address three potential challenges that may arise when scaling RaBID-seq to study brain-wide, densely labeled circuits: stochasticity of initial infection and spread, toxicity, and the potential for polysynaptic events when many founder cells are labeled. In addition, we will develop a new variant of Ra- bies featuring an evolvable barcode that can disambiguate monosynaptic vs polysynaptic spread in the setting of dense labeling. In Aim 2, we will benchmark RaBID-seq connectomes against other gold standard techniques measuring connectivity using multipatch-seq and spatial transcriptomics. In Aim 3, we will develop new algorithms using graph neural networks to reconstruct monosynaptic connectomes from barcoded viral datasets, assess the robustness of these algorithms under different experimental parameters in silico, and test whether an evolvable barcode can improve monosynaptic circuit reconstruction. If successful, these studies will establish RaBID-seq as a scalable, cost-effective tool for brain-wide connectivity mapping that can integrate transcriptomic cell types with their synaptic-level wiring diagram at single-cell resolution. By reducing the problem of synaptic connectivity into a problem of barcode sequencing, our approach has the potential to dramatically increase throughput, decrease costs and provide a direct link to the transcriptome of each mapped cell. RaBID-seq will transform brain-wide circuit mapping into a routine experiment that can be performed in any lab with modest resources, making it possible to explore how circuits differ between treatment conditions, in disease states, between the sexes, and across the lifespan. We will also generate pilot data in both mice and human slice cultures to demonstrate the utility of this tool across species.
摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andreas Tolias其他文献

Andreas Tolias的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andreas Tolias', 18)}}的其他基金

Simultaneous high-throughput functional, transcriptomic and connectivity profiling using FUNseq
使用 FUNseq 同时进行高通量功能、转录组和连接分析
  • 批准号:
    10413650
  • 财政年份:
    2022
  • 资助金额:
    $ 218.9万
  • 项目类别:
A MOLECULAR CODE FOR CONNECTIVITY IN THE NEOCORTEX
新皮质连接的分子密码
  • 批准号:
    9109046
  • 财政年份:
    2013
  • 资助金额:
    $ 218.9万
  • 项目类别:
A MOLECULAR CODE FOR CONNECTIVITY IN THE NEOCORTEX
新皮质连接的分子密码
  • 批准号:
    8743292
  • 财政年份:
    2013
  • 资助金额:
    $ 218.9万
  • 项目类别:
A MOLECULAR CODE FOR CONNECTIVITY IN THE NEOCORTEX
新皮质连接的分子密码
  • 批准号:
    8639755
  • 财政年份:
    2013
  • 资助金额:
    $ 218.9万
  • 项目类别:
Dissecting the Fabric of the Cerebral Cortex
解剖大脑皮层的结构
  • 批准号:
    8331581
  • 财政年份:
    2011
  • 资助金额:
    $ 218.9万
  • 项目类别:
Dissecting the Fabric of the Cerebral Cortex
解剖大脑皮层的结构
  • 批准号:
    8720779
  • 财政年份:
    2011
  • 资助金额:
    $ 218.9万
  • 项目类别:
Dissecting the Fabric of the Cerebral Cortex
解剖大脑皮层的结构
  • 批准号:
    8143960
  • 财政年份:
    2011
  • 资助金额:
    $ 218.9万
  • 项目类别:
Dissecting the Fabric of the Cerebral Cortex
解剖大脑皮层的结构
  • 批准号:
    8523898
  • 财政年份:
    2011
  • 资助金额:
    $ 218.9万
  • 项目类别:
Mechanisms of Perceptual Learning in Primary Visual Cortex
初级视觉皮层知觉学习的机制
  • 批准号:
    8139747
  • 财政年份:
    2008
  • 资助金额:
    $ 218.9万
  • 项目类别:
Mechanisms of Perceptual Learning in Primary Visual Cortex
初级视觉皮层知觉学习的机制
  • 批准号:
    7533774
  • 财政年份:
    2008
  • 资助金额:
    $ 218.9万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 218.9万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 218.9万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 218.9万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 218.9万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 218.9万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 218.9万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 218.9万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 218.9万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 218.9万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 218.9万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了