Mechanisms of Perceptual Learning in Primary Visual Cortex

初级视觉皮层知觉学习的机制

基本信息

  • 批准号:
    8139747
  • 负责人:
  • 金额:
    $ 36.47万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-09-01 至 2013-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION: There are many types of learning realized in different brain areas but the basic mechanisms underlying different forms of learning may be quite similar. One of the most widely studied forms of learning is perceptual learning in the visual system, defined as the permanent improvement in performance as a result of training on a sensory task. Training improves the ability to perceive simple as well as complex visual attributes such as depth defined with a random-dot stereogram, pop-out of a stimulus, and bomb outlines visualized though x-ray machines. Studying perceptual learning in the visual system is advantageous for understanding mechanisms of learning since it is thought to involve early stages of visual processing where the most is known about the properties of single units and cortical architecture. In addition, perceptual learning paradigms are used in the treatment of visual disorders (such as amblyopia) and in the enhancement of reorganization and behavioral recovery after brain injury, underscoring the importance of understanding the underlying mechanisms. A prerequisite for understanding learning mechanisms is to characterize how the response properties of individual neurons as well as their interactions change during the course of learning. A major impediment for realizing this has been the inability to record from the same individual neurons chronically, in vivo, during the course of learning. We now, for the first time, bypassed this limitation by developing a method using chronically implanted tetrode arrays that allows us to record from the same neurons across multiple consecutive days and weeks in awake, behaving macaques. We plan to study perceptual learning in an orientation discrimination task associated with improved performance in the discrimination of the orientation of a stimulus as a result of practice. Learning in this paradigm is specific to the trained retinal position and is therefore thought to reflect plasticity in early visual areas like the primary visual cortex (V1). We will study this process in area V1 of the macaque. First, we will measure how variable orientation tuning functions are across days and weeks during periods of no training (Specific Aim 1). Determining the stability of baseline orientation maps in V1 is an essential first step for studying how learning can modify them. Moreover, the information contained in the activity of a population of neurons also depends on the pair wise interactions between these neurons in addition to their individual properties. A good analogy is the performance of a team which does not only depend on the capabilities of its individual members but also in the way players interact with each other. Therefore, in order to quantify the information content of neural circuits before and after learning it is essential to also measure the strength of correlations between the neurons (Specific Aim 2). In Specific Aim 3, we will record chronically from the same neurons in V1 while animals are being trained in an orientation discrimination task. This is very exciting since for the first time we are now able to record from individual neurons during the course of learning and characterize the associated changes in neural circuits. PUBLIC HEALTH RELEVANCE One of the most widely studied forms of learning is perceptual learning in the visual system, defined as the permanent improvement in performance as a result of extensive training on numerous sensory tasks. Perceptual learning paradigms are used in the treatment of visual disorders such as amblyopia and using learning paradigms has great potential in the enhancement of reorganization and behavioral recovery after brain injury, underscoring the importance of understanding learning mechanisms. We will study perceptual learning while recording from the same neurons chronically during the course of learning.
产品说明:有许多类型的学习在不同的大脑区域实现,但不同形式的学习的基本机制可能非常相似。研究最广泛的学习形式之一是视觉系统中的感知学习,定义为由于感官任务的训练而导致的性能的永久改善。训练提高了感知简单和复杂视觉属性的能力,例如用随机点立体图定义的深度,刺激的弹出,以及通过X光机可视化的炸弹轮廓。研究视觉系统中的知觉学习有利于理解学习机制,因为它被认为涉及视觉处理的早期阶段,其中对单个单元和皮质结构的特性了解最多。此外,知觉学习范式被用于治疗视觉障碍(如弱视),并在脑损伤后的重组和行为恢复的增强,强调了了解潜在机制的重要性。理解学习机制的先决条件是描述单个神经元的响应特性以及它们的相互作用在学习过程中如何变化。实现这一点的一个主要障碍是无法在学习过程中长期记录相同的个体神经元。现在,我们第一次绕过了这个限制,开发了一种方法,使用长期植入的四极管阵列,使我们能够在连续多天和多周的清醒、行为正常的猕猴中记录相同的神经元。我们计划研究知觉学习的方向辨别任务与提高性能的歧视的刺激方向作为一个结果的做法。这种模式下的学习是特定于训练过的视网膜位置的,因此被认为反映了初级视觉皮层(V1)等早期视觉区域的可塑性。我们将在猕猴的V1区研究这一过程。首先,我们将测量在无训练期间(具体目标1),几天和几周内的可变方向调节功能。确定V1中基线方向图的稳定性是研究学习如何修改它们的重要第一步。此外,包含在神经元群体的活动中的信息还取决于这些神经元之间的成对相互作用以及它们的个体属性。一个很好的类比是,一个团队的表现不仅取决于其个人成员的能力,而且还取决于球员之间的互动方式。因此,为了量化学习前后神经回路的信息内容,还必须测量神经元之间的相关性强度(具体目标2)。在特定目标3中,我们将在动物接受方向辨别任务训练时,从V1中的相同神经元长期记录。这非常令人兴奋,因为我们现在第一次能够记录学习过程中单个神经元的情况,并描述神经回路中的相关变化。研究最广泛的学习形式之一是视觉系统中的感知学习,定义为通过大量感官任务的广泛训练而获得的性能永久改善。知觉学习范式被用于治疗弱视等视觉障碍,使用学习范式在增强脑损伤后的重组和行为恢复方面具有很大的潜力,强调了理解学习机制的重要性。我们将研究知觉学习,同时在学习过程中长期记录相同的神经元。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andreas Tolias其他文献

Andreas Tolias的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andreas Tolias', 18)}}的其他基金

BRAIN CONNECTS: Synaptic resolution whole-brain circuit mapping of molecularly defined cell types using a barcoded rabies virus
大脑连接:使用条形码狂犬病病毒对分子定义的细胞类型进行突触分辨率全脑电路图谱
  • 批准号:
    10672786
  • 财政年份:
    2023
  • 资助金额:
    $ 36.47万
  • 项目类别:
Simultaneous high-throughput functional, transcriptomic and connectivity profiling using FUNseq
使用 FUNseq 同时进行高通量功能、转录组和连接分析
  • 批准号:
    10413650
  • 财政年份:
    2022
  • 资助金额:
    $ 36.47万
  • 项目类别:
A MOLECULAR CODE FOR CONNECTIVITY IN THE NEOCORTEX
新皮质连接的分子密码
  • 批准号:
    9109046
  • 财政年份:
    2013
  • 资助金额:
    $ 36.47万
  • 项目类别:
A MOLECULAR CODE FOR CONNECTIVITY IN THE NEOCORTEX
新皮质连接的分子密码
  • 批准号:
    8743292
  • 财政年份:
    2013
  • 资助金额:
    $ 36.47万
  • 项目类别:
A MOLECULAR CODE FOR CONNECTIVITY IN THE NEOCORTEX
新皮质连接的分子密码
  • 批准号:
    8639755
  • 财政年份:
    2013
  • 资助金额:
    $ 36.47万
  • 项目类别:
Dissecting the Fabric of the Cerebral Cortex
解剖大脑皮层的结构
  • 批准号:
    8331581
  • 财政年份:
    2011
  • 资助金额:
    $ 36.47万
  • 项目类别:
Dissecting the Fabric of the Cerebral Cortex
解剖大脑皮层的结构
  • 批准号:
    8720779
  • 财政年份:
    2011
  • 资助金额:
    $ 36.47万
  • 项目类别:
Dissecting the Fabric of the Cerebral Cortex
解剖大脑皮层的结构
  • 批准号:
    8143960
  • 财政年份:
    2011
  • 资助金额:
    $ 36.47万
  • 项目类别:
Dissecting the Fabric of the Cerebral Cortex
解剖大脑皮层的结构
  • 批准号:
    8523898
  • 财政年份:
    2011
  • 资助金额:
    $ 36.47万
  • 项目类别:
Mechanisms of Perceptual Learning in Primary Visual Cortex
初级视觉皮层知觉学习的机制
  • 批准号:
    7533774
  • 财政年份:
    2008
  • 资助金额:
    $ 36.47万
  • 项目类别:

相似海外基金

The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
  • 批准号:
    EP/Z000920/1
  • 财政年份:
    2025
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
  • 批准号:
    FT230100276
  • 财政年份:
    2024
  • 资助金额:
    $ 36.47万
  • 项目类别:
    ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
  • 批准号:
    MR/X024261/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
  • 批准号:
    DE240100388
  • 财政年份:
    2024
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Discovery Early Career Researcher Award
Zootropolis: Multi-species archaeological, ecological and historical approaches to animals in Medieval urban Scotland
Zootropolis:苏格兰中世纪城市动物的多物种考古、生态和历史方法
  • 批准号:
    2889694
  • 财政年份:
    2023
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Studentship
Using novel modelling approaches to investigate the evolution of symmetry in early animals.
使用新颖的建模方法来研究早期动物的对称性进化。
  • 批准号:
    2842926
  • 财政年份:
    2023
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Studentship
Study of human late fetal lung tissue and 3D in vitro organoids to replace and reduce animals in lung developmental research
研究人类晚期胎儿肺组织和 3D 体外类器官在肺发育研究中替代和减少动物
  • 批准号:
    NC/X001644/1
  • 财政年份:
    2023
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Training Grant
RUI: Unilateral Lasing in Underwater Animals
RUI:水下动物的单侧激光攻击
  • 批准号:
    2337595
  • 财政年份:
    2023
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Continuing Grant
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
  • 批准号:
    2232190
  • 财政年份:
    2023
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Continuing Grant
A method for identifying taxonomy of plants and animals in metagenomic samples
一种识别宏基因组样本中植物和动物分类的方法
  • 批准号:
    23K17514
  • 财政年份:
    2023
  • 资助金额:
    $ 36.47万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了