Public health priority setting for environmental metals mixtures and birth defects

环境金属混合物和出生缺陷的公共卫生优先事项设定

基本信息

  • 批准号:
    10413856
  • 负责人:
  • 金额:
    $ 28.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

Birth defects are the leading known cause of infant mortality and one of the leading sources of years of potential life lost. In fact, one out of every 33 live births in the United States results in a birth defect. The lack of known, modifiable environmental factors associated with birth defects remains a significant barrier to progress. In prior work, our team examined exposure to arsenic, manganese, cadmium, and lead in relation to birth defects. We have demonstrated that exposure to a toxic metals mixture through private well-water is associated with increased risk for birth defects. Specifically, in areas where arsenic and manganese co-occur, we observed higher-than-expected prevalence of birth defects. Current filtration technology is sufficient to reduce exposures to many toxic metals. Unfortunately, widespread adoption of filtration is infeasible due to cost, and there is a substantial gap in knowledge about how to best intervene. Ideally, controlled experiments of water filtration would be used to guide decisions about where to intervene, but, critically, obtaining such data is prohibitively expensive. Thus, public health would be well served by using existing, observational data to estimate the effects of such interventions. This innovative project will use state-of-the-art statistical methods to directly quantify the impact of potential interventions on toxic metal mixtures exposure as a strategy for reducing the risk of birth defects. This approach can be used with varying levels of sophistication to adapt to local public health needs. The overarching hypothesis of this proposal is that we can use routinely collected surveillance data to identify the public health burden of birth defects in North Carolina due to toxic metals exposures, as well as identify interventions to maximize reductions in this burden under realistic constraints on cost and feasibility. We will test this hypothesis in three specific aims. In Aim 1, we will estimate the risk of birth defects attributable to toxic metal mixtures using data on well water contamination and 1.2 million NC births from 2003-2013 from the NC Department of Health and Human Services and the NC Birth Defects Monitoring Program. We will apply a cutting-edge framework that combines Bayesian methodology with a causal inference framework to estimate attributable risks from highly correlated exposures. In Aim 2, we apply our framework to estimate the reductions in the attributable risk of birth defects under potential interventions including filtration or changing water sources. We will contrast birth defects risks under interventions that target areas of concern, such as highly exposed areas, as a way to maximize reductions in birth defects. In Aim 3, we will conduct a cost-effectiveness analysis in order to optimize available resources to reduce birth defects. This work is a paradigm shift in how environmental mixtures can be addressed. The results will provide stakeholders with data for effective decision making. Importantly, our new approach to the analysis of environmental mixtures provides a template for identifying priority exposures, areas, or groups to maximize the public health benefit of policies on exposure mixtures in resource-limited settings.
出生缺陷是婴儿死亡的主要已知原因,也是导致婴儿死亡的主要原因之一。 潜在寿命损失年数的来源。事实上,在美国,每33个活产婴儿中就有一个 各州导致出生缺陷。缺乏已知的、可改变的环境因素 出生缺陷仍然是进步的一个重大障碍。在之前的工作中,我们的团队检查了 砷、锰、镉和铅暴露与出生缺陷的关系。我们 已经证明,通过私人井水接触有毒金属混合物, 与出生缺陷风险增加有关。特别是,在砷和 锰共同发生,我们观察到高于预期的出生缺陷患病率。电流 过滤技术足以减少对许多有毒金属的接触。 不幸的是,由于成本的原因,过滤的广泛采用是不可行的,并且存在一种 在如何进行最佳干预的知识方面存在巨大差距。理想情况下,控制水的实验 过滤将被用来指导在哪里进行干预的决定,但关键是, 这样的数据非常昂贵。因此,公共卫生将得到很好的服务, 现有的观测数据来估计这些干预措施的效果。这一创新 项目将使用最先进的统计方法直接量化的影响, 作为减少有毒金属混合物接触的战略的可能干预措施 出生缺陷的风险。这种方法可以在不同的复杂程度上使用,以适应 当地的公共卫生需求。这个建议的首要假设是,我们可以经常使用 收集监测数据,以确定北卡罗来纳州出生缺陷的公共卫生负担 以及确定干预措施,以最大限度地减少这一 在成本和可行性的现实限制下负担。我们将在三个方面来检验这个假设。 具体目标。在目标1中,我们将估计有毒物质引起的出生缺陷的风险。 金属混合物使用井水污染和120万NC出生的数据, 2003-2013年,北卡罗来纳州卫生与公众服务部和北卡罗来纳州出生 缺陷监控计划。我们将应用一个尖端的框架,结合贝叶斯 方法与因果推理框架,以估计归因于风险的高度 相关曝光在目标2中,我们应用我们的框架来估计 潜在干预(包括过滤或更换)下出生缺陷的归因风险 水源。我们将对比针对以下领域的干预措施下的出生缺陷风险: 因此,我们建议,应将高度暴露区域等问题作为最大限度减少出生缺陷的一种方式。在目标3中, 我们将进行成本效益分析,以优化可用资源, 出生缺陷这项工作是环境混合物如何 被解决。结果将为利益相关者提供有效决策的数据 制作。重要的是,我们分析环境混合物的新方法提供了一种 用于确定优先暴露、区域或群体的模板,以最大限度地提高公共卫生效益 在资源有限的情况下,制定关于接触混合物的政策。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rebecca Fry其他文献

Rebecca Fry的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rebecca Fry', 18)}}的其他基金

The UNC Chapel Hill Superfund Research Program (UNC-SRP)
北卡罗来纳大学教堂山超级基金研究计划 (UNC-SRP)
  • 批准号:
    10797455
  • 财政年份:
    2023
  • 资助金额:
    $ 28.95万
  • 项目类别:
Personalized care for prenatal stress reduction and preterm birth prevention
减轻产前压力和预防早产的个性化护理
  • 批准号:
    10608372
  • 财政年份:
    2023
  • 资助金额:
    $ 28.95万
  • 项目类别:
Core A: Administrative Core
核心A:行政核心
  • 批准号:
    10570838
  • 财政年份:
    2020
  • 资助金额:
    $ 28.95万
  • 项目类别:
The UNC Chapel Hill Superfund Research Program (UNC-SRP)
北卡罗来纳大学教堂山超级基金研究计划 (UNC-SRP)
  • 批准号:
    10570837
  • 财政年份:
    2020
  • 资助金额:
    $ 28.95万
  • 项目类别:
The UNC Chapel Hill Superfund Research Program (UNC-SRP)
北卡罗来纳大学教堂山超级基金研究计划 (UNC-SRP)
  • 批准号:
    10207906
  • 财政年份:
    2020
  • 资助金额:
    $ 28.95万
  • 项目类别:
The UNC Chapel Hill Superfund Research Program (UNC-SRP)
北卡罗来纳大学教堂山超级基金研究计划 (UNC-SRP)
  • 批准号:
    10208313
  • 财政年份:
    2020
  • 资助金额:
    $ 28.95万
  • 项目类别:
Genetic underpinning of diabetes associated with arsenic exposure
与砷暴露相关的糖尿病的遗传基础
  • 批准号:
    10561667
  • 财政年份:
    2019
  • 资助金额:
    $ 28.95万
  • 项目类别:
Genetic underpinning of diabetes associated with arsenic exposure
与砷暴露相关的糖尿病的遗传基础
  • 批准号:
    10338079
  • 财政年份:
    2019
  • 资助金额:
    $ 28.95万
  • 项目类别:
Genetic underpinning of diabetes associated with arsenic exposure
与砷暴露相关的糖尿病的遗传基础
  • 批准号:
    10093993
  • 财政年份:
    2019
  • 资助金额:
    $ 28.95万
  • 项目类别:
Developmental windows for arsenic-associated diabetes
砷相关糖尿病的发育窗口
  • 批准号:
    9769729
  • 财政年份:
    2018
  • 资助金额:
    $ 28.95万
  • 项目类别:

相似海外基金

WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
  • 批准号:
    10093543
  • 财政年份:
    2024
  • 资助金额:
    $ 28.95万
  • 项目类别:
    Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
  • 批准号:
    24K16436
  • 财政年份:
    2024
  • 资助金额:
    $ 28.95万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
  • 批准号:
    24K16488
  • 财政年份:
    2024
  • 资助金额:
    $ 28.95万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 28.95万
  • 项目类别:
    EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
  • 批准号:
    24K20973
  • 财政年份:
    2024
  • 资助金额:
    $ 28.95万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 28.95万
  • 项目类别:
    EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
  • 批准号:
    10075502
  • 财政年份:
    2023
  • 资助金额:
    $ 28.95万
  • 项目类别:
    Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
  • 批准号:
    10089082
  • 财政年份:
    2023
  • 资助金额:
    $ 28.95万
  • 项目类别:
    EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
  • 批准号:
    481560
  • 财政年份:
    2023
  • 资助金额:
    $ 28.95万
  • 项目类别:
    Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
  • 批准号:
    2321091
  • 财政年份:
    2023
  • 资助金额:
    $ 28.95万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了