Dynamics of cellular brain metabolism using mass spectrometry imaging
使用质谱成像研究细胞脑代谢动力学
基本信息
- 批准号:10418219
- 负责人:
- 金额:$ 44.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-01 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:Action PotentialsAcuteAddressAgingAntibodiesAntioxidantsAstrocytesBehaviorBiosensorBrainCell Culture TechniquesCellsCitric Acid CycleClustered Regularly Interspaced Short Palindromic RepeatsComplementComplexDataDiseaseEnergy MetabolismEnergy SupplyEnergy-Generating ResourcesExhibitsFatty AcidsFire - disastersFoundationsFreezingFunctional disorderFutureGlucoseGlutamineGlycolysisHabitsHeatingHippocampus (Brain)IndividualInterneuronsKetone BodiesKnowledgeLabelLeadLearningLipidsMapsMeasurementMeasuresMediatingMetabolicMetabolic PathwayMetabolismMethodsMicrotomyMusNADPNerve DegenerationNeurodegenerative DisordersNeuronsOxidantsOxidation-ReductionOxygenParvalbuminsPathway interactionsPentosephosphate PathwayPharmacologyPhysiologicalPlayPositioning AttributePositron-Emission TomographyProcessPropertyProteinsRegulationRoleSignal TransductionSliceStable Isotope LabelingStressTechnologyTestingTherapeuticTimeTissuesWorkbasebrain cellbrain healthbrain metabolismbrain tissuecell typeexperimental studyflexibilitygene productgranule cellimaging capabilitiesimaging modalityin vivoinhibitorknock-downmass spectrometric imagingmetabolic abnormality assessmentmetabolomicsneuronal metabolismneuropathologypreservationpublic health relevancerelating to nervous systemresponsesensor
项目摘要
PROJECT SUMMARY/ABSTRACT
Brain function demands a lot of metabolic energy, often in brief, local bursts. The ability of each brain cell’s
metabolic machinery to respond to this energy demand is crucial both for the immediate functional properties of
brain signaling and for the long-term health of the brain. Although the core metabolic pathways are shared by
all types of brain cells, we hypothesize that different brain cell types are likely to emphasize different metabolic
components in response to acute energy demand. For instance, neurons and astrocytes are thought to play
complementary metabolic roles; and neurons that fire nearly constantly, or episodically at very high rates, may
manage their metabolism differently from typically quiescent neurons. Dysfunction in metabolism can lead to
disease and neurodegeneration, and the metabolic differences between cell types may underlie the very cell-
type-specific vulnerabilities of brain cells seen in neurodegenerative diseases.
To study the distinctive, dynamic metabolic responses of specific cell types in intact tissue, rather than cell
culture, we will perform physiological experiments on acute brain slices from mice, using neuronal stimulation,
13C metabolic labeling, and metabolic inhibitors. We will then use mass spectrometry imaging (MSI) to
quantitatively map the levels of numerous metabolites in thin sections from those brain slices. Fast thermal
preservation (flash heating and freezing) of the brain slices at specific times after stimulation or application of
13C-labeled metabolites allows us to measure a fine time course of metabolic changes, and the imaging capability
allows us to obtain metabolic measurements from specific cell types. Dentate granule cell (DGC) metabolic
behavior will be isolated by MSI of the compact granule cell layer of the hippocampus; the metabolic signals from
single astrocytes and fast-spiking parvalbumin-positive interneurons will be isolated using cell-type specific
signatures, based on correspondence with labeling by established antibodies.
We will use these methods to construct a rich picture of how these individual cell types use their core metabolic
pathways (glycolysis, pentose phosphate pathway, TCA cycle), both at baseline and dynamically in response to
neuronal stimulation. We will test the specific hypotheses that in DGCs, neuronal glycolysis is upregulated after
stimulation, and that the pentose phosphate pathway then becomes engaged. Experiments using fuel molecules
with different stable isotope labels will reveal how neurons and astrocytes flexibly utilize a mixture of energy
sources. By combining data on metabolite levels with data on the activity of individual metabolic pathways, we
can learn not only what the metabolic changes are, but also the positions along each pathway at which key
regulatory changes occur. And we will test the hypothesis that DGCs, astrocytes, and fast-spiking interneurons
use their core metabolic pathways distinctively in response to neuronal stimulation.
This project will reveal the distinctive metabolism of different cell types in healthy brain tissue and lay a foundation
for future work on how metabolism may go awry (as is suspected) in aging or in neurodegenerative disease.
项目摘要/摘要
大脑功能需要大量的代谢能量,通常是简短的局部爆发。每个脑细胞的能力
响应这种能源需求的代谢机制对于直接功能特性至关重要
大脑信号传导和大脑的长期健康。尽管核心代谢途径由
所有类型的脑细胞,我们假设不同的脑细胞类型可能会强调不同的代谢
响应急性能源需求的组件。例如,神经元和星形胶质细胞可以发挥作用
完全代谢角色;几乎不断发射的神经元,或以非常高的速度发射,可能
管理其新陈代谢与通常静止神经元不同。新陈代谢功能障碍可能导致
疾病和神经变性,细胞类型之间的代谢差异可能是细胞的基础
神经退行性疾病中看到的脑细胞的类型特异性漏洞。
研究完整组织中特定细胞类型的独特,动态代谢反应,而不是细胞
培养,我们将使用神经元刺激对小鼠的急性脑切片进行物理实验,
13C代谢标记和代谢抑制剂。然后,我们将使用质谱成像(MSI)
定量地绘制这些大脑切片的薄部分中众多代谢产物的水平。快速热力
刺激或应用后的特定时间保存(闪光加热和冷冻)
13C标记的代谢物使我们能够测量代谢变化的良好时光过程,成像能力
允许我们从特定细胞类型中获得代谢测量。齿状颗粒细胞(DGC)代谢
行为将通过海马紧凑型颗粒细胞层的MSI分离。来自
将使用细胞类型特异
签名,基于与已建立抗体标记的对应关系。
我们将使用这些方法来构造这些单个单元类型如何使用其核心代谢的丰富图片
途径(糖酵解,五磷酸五磷酸五磷酸途径,TCA循环),无论是基线还是动态地响应于
神经元刺激。我们将测试特定的假设,即在DGCS中,神经元糖酵解在
刺激,然后磷酸五磷酸盐途径随后参与。使用燃料分子的实验
具有不同稳定的同位素标签将揭示神经元和星形胶质细胞如何灵活地利用能量的混合物
来源。通过将代谢物水平的数据与有关单个代谢途径活性的数据结合在一起,我们
不仅可以学习代谢变化是什么,而且还可以学习沿哪种键的途径的位置
发生调节性变化。我们将检验以下假设,即DGC,星形胶质细胞和快速刺激性中间神经元
在响应神经元刺激的响应中,使用其核心代谢途径。
该项目将揭示健康脑组织中不同细胞类型的独特代谢,并奠定基础
对于未来的工作,关于新陈代谢如何在衰老或神经退行性疾病中出现问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nathalie YR Agar其他文献
Nathalie YR Agar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nathalie YR Agar', 18)}}的其他基金
Project 1: Deciphering the Dynamic Evolution of the Tumor-Neural Interface
项目1:破译肿瘤-神经界面的动态演化
- 批准号:
10729275 - 财政年份:2023
- 资助金额:
$ 44.99万 - 项目类别:
Defining mechanisms to promote antitumor immunity by modulating one-carbon metabolism
定义通过调节一碳代谢促进抗肿瘤免疫的机制
- 批准号:
10565099 - 财政年份:2023
- 资助金额:
$ 44.99万 - 项目类别:
Dynamics of Cellular Brain Metabolism Using Mass Spectrometry Imaging
使用质谱成像研究细胞脑代谢动力学
- 批准号:
10556434 - 财政年份:2022
- 资助金额:
$ 44.99万 - 项目类别:
Real-Time Stereotactic Mass Spectrometry Tissue Analysis for Intraoperative Neuro
术中神经的实时立体定向质谱组织分析
- 批准号:
7981836 - 财政年份:2010
- 资助金额:
$ 44.99万 - 项目类别:
相似国自然基金
阿魏酸基天然抗氧化抗炎纳米药物用于急性肾损伤诊疗一体化研究
- 批准号:82302281
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于hemin-MOFs的急性心肌梗塞标志物负背景光电化学-比色双模分析
- 批准号:22304039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
RNA甲基转移酶NSUN2介导SCD1 mRNA m5C修饰调控急性髓系白血病细胞铁死亡的机制研究
- 批准号:82300173
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于IRF5/MYD88信号通路调控巨噬细胞M1极化探讨针刀刺营治疗急性扁桃体炎的机制研究
- 批准号:82360957
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:地区科学基金项目
相似海外基金
3D Bioprinting of a Bioelectric Cell Bridge for Re-engineering Cardiac Conduction
用于重新设计心脏传导的生物电细胞桥的 3D 生物打印
- 批准号:
10753836 - 财政年份:2023
- 资助金额:
$ 44.99万 - 项目类别:
Elucidation of Nanostructure and Function of Spontaneous GABAergic Transmission at the Inhibitory Synapse
抑制性突触自发 GABA 能传递的纳米结构和功能的阐明
- 批准号:
10750025 - 财政年份:2023
- 资助金额:
$ 44.99万 - 项目类别:
Prefrontal circuit mechanisms of repetitive transcranial magnetic stimulation
重复经颅磁刺激的前额电路机制
- 批准号:
10649292 - 财政年份:2023
- 资助金额:
$ 44.99万 - 项目类别:
High content analgesic screening from human nociceptors
从人类伤害感受器中筛选高含量镇痛剂
- 批准号:
10578042 - 财政年份:2023
- 资助金额:
$ 44.99万 - 项目类别: