Cellular Phylogenetics and Evolution
细胞系统发育学和进化
基本信息
- 批准号:10418915
- 负责人:
- 金额:$ 33.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:BioinformaticsBiologicalCellsChargeCollectionComputer softwareDataData AnalysesData SetDimensionsDisease OutbreaksEvolutionFrequenciesGenetic RecombinationGenomeGenomicsGenotypeHaplotypesIndividualJointsLeadLibrariesMethodologyMethodsMolecularMolecular EvolutionMutationMutation AnalysisPatternPerformancePhasePhylogenetic AnalysisPhylogenetic PatternPhylogenyPositioning AttributeProcessRecurrenceResearchResearch PersonnelResolutionSequence AlignmentSomatic CellSource CodeTechniquesTechnologyTestingTimeTrainingTraining and EducationTranslatingTreesVariantVertebral columnfrontiergenetic varianthigh throughput analysisindexinginnovationlarge datasetsmethod developmentnovelpathogenprogramsreconstructionresearch and developmentsingle cell sequencingsoftware developmenttool
项目摘要
Project Summary/Abstract
Molecular evolution and genomics research has entered an exciting phase with the advent of sequencing
techniques, enabling us to profile genome variation from hundreds of cells from an individual. Now, evolutionary
patterns and processes can be revealed at the highest cellular resolution. However, the state-of-the-art
phylogeny reconstruction methods perform poorly for cellular sequencing data because the number of genetic
variants is small due to a low mutation rate and short time span. Cellular sequence alignments are frequently
tall, i.e., a small number of variants (columns) and a large number of sequences (cells, rows). A common feature
of these tall datasets is the presence of sequencing error due to technical challenges associated with single-cell
sequencing. Even small sequencing errors cause inferred cellular phylogenies to become unreliable and produce
erroneous downstream biological inferences. We will develop innovative methods for molecular evolutionary and
phylogenetic analysis of tall data for studying somatic and pathogen evolution. Specifically, our aims will be to
(a) develop a mutation ordering and phylogeny estimation (MOPE) framework to infer tall data phylogenies
accurately and (b) integrate MOPE with traditional phylogenetic methods to further increase the accuracy of
evolutionary inferences. We will also (c) develop a library of software for high-throughput analysis of tall data.
Ultimately, the proposed software and research developments will advance molecular evolution and genomics,
bioinformatics, and biomedicine. New software and its source code will be made available free for research,
education, and training.
项目总结/摘要
随着测序技术的出现,分子进化和基因组学研究进入了一个激动人心的阶段
技术,使我们能够从一个人的数百个细胞中分析基因组变异。现在,进化论
可以在最高的细胞分辨率下揭示模式和过程。然而,最先进的
基因组重建方法对于细胞测序数据表现不佳,因为基因组序列的数量
由于突变率低和时间跨度短,变异很小。细胞序列比对经常是
高,即,少量变体(列)和大量序列(单元格、行)。一个共同特点
这些高数据集中的一个是由于与单细胞相关的技术挑战而存在测序错误
测序即使是很小的测序错误也会导致推断的细胞遗传学变得不可靠,
错误的下游生物学推论。我们将开发分子进化和
系统发育分析用于研究体细胞和病原体进化。具体而言,我们的目标是
(a)开发一个突变排序和遗传估计(MOPE)框架,以推断高数据遗传
(B)将MOPE与传统的系统发育方法相结合,以进一步提高
进化推论我们还将(c)开发一个软件库,用于对高数据进行高通量分析。
最终,拟议中的软件和研究开发将推动分子进化和基因组学,
生物信息学和生物医学。新的软件及其源代码将免费提供给研究人员,
教育和培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sayaka Miura其他文献
Sayaka Miura的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sayaka Miura', 18)}}的其他基金
Bayesian Evolution-Aware Methods for tumor single cell sequences
用于肿瘤单细胞序列的贝叶斯进化感知方法
- 批准号:
9436072 - 财政年份:2017
- 资助金额:
$ 33.68万 - 项目类别:
相似海外基金
Conference: Society for Research on Biological Rhythms (SRBR): Timing from Cells to Clinics: San Juan, Puerto Rico May 18th - May 23rd, 2024
会议:生物节律研究协会 (SRBR):从细胞到诊所的计时:波多黎各圣胡安 2024 年 5 月 18 日至 5 月 23 日
- 批准号:
2416046 - 财政年份:2024
- 资助金额:
$ 33.68万 - 项目类别:
Standard Grant
Engineering biological signaling pathways using synthetic cells (SIGSYNCELL)
使用合成细胞工程生物信号通路 (SIGSYNCELL)
- 批准号:
EP/Y031326/1 - 财政年份:2024
- 资助金额:
$ 33.68万 - 项目类别:
Research Grant
Exceptional Points Enhanced Acoustic Sensing of Biological Cells
特殊点增强生物细胞的声学传感
- 批准号:
2328407 - 财政年份:2024
- 资助金额:
$ 33.68万 - 项目类别:
Standard Grant
SIGSYNCELL: Engineering biological signaling pathways using synthetic cells
SIGSYNCELL:使用合成细胞工程生物信号通路
- 批准号:
EP/Y032675/1 - 财政年份:2024
- 资助金额:
$ 33.68万 - 项目类别:
Research Grant
Mechanism and biological significance of cell death of test cells for follicular maturation test cells
卵泡成熟试验细胞的细胞死亡机制及生物学意义
- 批准号:
23K05837 - 财政年份:2023
- 资助金额:
$ 33.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
EPSRC New Horizons 2021: Engineering synthetic synapses between artificial and biological cells.
EPSRC New Horizons 2021:人工细胞和生物细胞之间的工程合成突触。
- 批准号:
EP/X018903/1 - 财政年份:2023
- 资助金额:
$ 33.68万 - 项目类别:
Research Grant
The potential role and mechanism of mitophagy in maintaining the biological characteristics of cancer stem cells
线粒体自噬在维持肿瘤干细胞生物学特性中的潜在作用和机制
- 批准号:
23K14598 - 财政年份:2023
- 资助金额:
$ 33.68万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Algebraic Modelling of Molecular Interactions in Biological Cells
生物细胞中分子相互作用的代数模型
- 批准号:
2890922 - 财政年份:2023
- 资助金额:
$ 33.68万 - 项目类别:
Studentship
Biological function of osteoporotic drugs on bone-specific blood vessels and perivascular cells
骨质疏松药物对骨特异性血管和血管周围细胞的生物学功能
- 批准号:
22K21006 - 财政年份:2022
- 资助金额:
$ 33.68万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Do plastics have deteriorated in the environment become an aerosol and reach the alveoli and biological cells?
塑料在环境中变质后是否会变成气溶胶并到达肺泡和生物细胞?
- 批准号:
22K18829 - 财政年份:2022
- 资助金额:
$ 33.68万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)














{{item.name}}会员




