CRII: SCH: Domain-guided Machine Learning for Clinical Decision Support in Epilepsy
CRII:SCH:用于癫痫临床决策支持的领域引导机器学习
基本信息
- 批准号:2344731
- 负责人:
- 金额:$ 17.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Despite the nationwide shortage of neurologists, present-day neurological care relies heavily on time-consuming visual review of patient data by trained staff. This is particularly emphasized in the field of epileptology where epileptologists spend a substantial amount of their time on visually reviewing and interpreting lengthy multi-channel time series of brain electrical activity, called electroencephalography (EEG). This burden not only contributes to the escalation of epileptologist burnout, but also introduces reviewer bias and potential errors in clinical decisions. The goal of this proposal is to develop a machine-learning (ML)-based decision support framework that works together with epileptologists and focuses their attention to actionable information. We will leverage the computing expertise of Illinois and the clinical domain expertise of our collaborators at the Mayo Clinic and demonstrate significant innovations across the data-science lifecycle to achieve the aforementioned goal. The data and the methods utilized in this research will serve as examples in advanced interdisciplinary classes and training healthcare professionals. We also believe that the natural appeal of healthcare applications will stimulate the interest of undergraduates and underrepresented minorities.This research will develop a set of novel domain-guided analytical methods to process time-series EEG data, extract actionable information and provide clinical decision support for diagnosing epilepsy. The intellectual merit of the proposed research is in addressing an unmet need in the field of epileptology through the development of novel explainable machine learning architectures guided by clinical domain expertise. Our proposed work includes, a) development of a fully automated and efficient EEG preprocessing pipeline by leveraging the cheap inference capability of deep learning-based approaches; b) designing novel ML models, guided by domain expertise, that capture the spatio-temporal dynamics of EEG data; c) interpretation of model predictions and quantification of prediction uncertainty for clinical decision support; and d) demonstration of the framework in the real world by developing a robust analytical tool to augment expert review of EEGs and improve the sensitivity of epilepsy diagnosis.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
尽管全国范围内缺乏神经科医生,但当今的神经科护理在很大程度上依赖于训练有素的工作人员对患者数据进行耗时的视觉审查。这在癫痫学领域中特别强调,其中癫痫学家花费大量时间在视觉上审查和解释大脑电活动的冗长的多通道时间序列,称为脑电图(EEG)。这种负担不仅导致癫痫病学家倦怠的升级,而且还在临床决策中引入了评审员偏见和潜在错误。该提案的目标是开发一个基于机器学习(ML)的决策支持框架,该框架与癫痫学家一起工作,并将他们的注意力集中在可操作的信息上。我们将利用伊利诺伊州的计算专业知识和我们在马约诊所的合作者的临床领域专业知识,并在数据科学生命周期中展示重大创新,以实现上述目标。本研究中使用的数据和方法将作为高级跨学科课程和培训医疗保健专业人员的范例。我们也相信医疗应用的自然吸引力将激发本科生和代表性不足的少数群体的兴趣。本研究将开发一套新颖的领域引导的分析方法来处理时间序列EEG数据,提取可操作的信息,并为诊断癫痫提供临床决策支持。拟议研究的智力价值在于通过开发由临床领域专业知识指导的新型可解释机器学习架构来解决癫痫学领域未满足的需求。我们提出的工作包括,a)通过利用基于深度学习的方法的廉价推理能力,开发一个完全自动化和高效的EEG预处理管道; B)在领域专业知识的指导下,设计新颖的ML模型,捕获EEG数据的时空动态; c)解释模型预测和量化预测不确定性,以支持临床决策;以及d)通过开发一个强大的分析工具来增强EEG的专家评审并提高癫痫诊断的灵敏度,从而在真实的世界中展示该框架。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响评审标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yogatheesan Varatharajah其他文献
Population-based spectral characteristics of normal interictal scalp EEG inform diagnosis and treatment planning in focal epilepsy
基于人群的正常发作间期头皮脑电图的频谱特征为局灶性癫痫的诊断和治疗规划提供信息
- DOI:
10.1038/s41598-025-08871-w - 发表时间:
2025-07-11 - 期刊:
- 影响因子:3.900
- 作者:
Neeraj Wagh;Andrea Duque-Lopez;Boney Joseph;Brent Berry;Lara Jehi;Daniel Crepeau;Leland Barnard;Venkatsampath Gogineni;Benjamin H. Brinkmann;David T. Jones;Gregory Worrell;Yogatheesan Varatharajah - 通讯作者:
Yogatheesan Varatharajah
A pilot randomized controlled double-blind trial of intermittent theta burst stimulation (iTBS) repetitive transcranial magnetic stimulation (rTMS) to improve memory in mild cognitive impairment (MCI): a study protocol
- DOI:
10.1186/s40814-025-01625-5 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:1.600
- 作者:
Maria I. Lapid;Sandeep R. Pagali;Michael R. Basso;Paul E. Croarkin;Jennifer R. Geske;John Huston;Karimul Islam;Boney Joseph;Walter W. Kennebeck;Daehun Kang;Simon Kung;Allison M. LeMahieu;Brian N. Lundstrom;Ronald C. Petersen;Mikaela M. Sarran;Yunhong Shu;Ilya M. Swanson;Erik K. St. Louis;Melissa K. Wang;Yogatheesan Varatharajah;Neeraj Wagh;Kirk M. Welker;Gregory A. Worrell;Bradley F. Boeve - 通讯作者:
Bradley F. Boeve
Yogatheesan Varatharajah的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yogatheesan Varatharajah', 18)}}的其他基金
CRII: SCH: Domain-guided Machine Learning for Clinical Decision Support in Epilepsy
CRII:SCH:用于癫痫临床决策支持的领域引导机器学习
- 批准号:
2105233 - 财政年份:2021
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
相似国自然基金
基于生物类芬顿的LA/Sch@BB耦合系统去除水产养殖尾水中抗生素的效果与机制研究
- 批准号:42377063
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
具有低聚合收缩和生态防龋双功能的埃洛石纳米管@SCH-79797改性复合树脂的研究
- 批准号:82170950
- 批准年份:2021
- 资助金额:52 万元
- 项目类别:面上项目
一类稳态Schödinger-Poisson-Slater方程标准化解的研究
- 批准号:11501137
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
锥中修改的Poisson-Sch积分在无穷远点处的渐近行为及其应用
- 批准号:U1304102
- 批准年份:2013
- 资助金额:30.0 万元
- 项目类别:联合基金项目
酵母中Sch9蛋白激酶信号途径调控衰老的分子机理
- 批准号:30671181
- 批准年份:2006
- 资助金额:24.0 万元
- 项目类别:面上项目
相似海外基金
Open Access Block Award 2024 - London Sch of Hygiene & Tropic. Medicine
2024 年开放访问区块奖 - 伦敦卫生学院
- 批准号:
EP/Z532368/1 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Research Grant
CRII: SCH: Towards Smart Patient Flow Management: Real-time Inpatient Length of Stay Modeling and Prediction
CRII:SCH:迈向智能患者流程管理:实时住院患者住院时间建模和预测
- 批准号:
2246158 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
SCH: Dementia Early Detection for Under-represented Populations via Fair Multimodal Self-Supervised Learning
SCH:通过公平的多模式自我监督学习对代表性不足的人群进行痴呆症早期检测
- 批准号:
10816864 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Collaborative Research: SCH: Improving Older Adults' Mobility and Gait Ability in Real-World Ambulation with a Smart Robotic Ankle-Foot Orthosis
合作研究:SCH:使用智能机器人踝足矫形器提高老年人在现实世界中的活动能力和步态能力
- 批准号:
2306660 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: SCH: A wireless optoelectronic implant for closed-loop control of bi-hormone secretion from genetically modified islet organoid grafts
合作研究:SCH:一种无线光电植入物,用于闭环控制转基因胰岛类器官移植物的双激素分泌
- 批准号:
2306708 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: SCH: AI-driven RFID Sensing for Smart Health Applications
合作研究:SCH:面向智能健康应用的人工智能驱动的 RFID 传感
- 批准号:
2306790 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
SCH: Computer Vision Algorithms to Detect Tics In Patients with Tourette Syndrome
SCH:用于检测抽动秽语综合征患者抽动的计算机视觉算法
- 批准号:
10817272 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
SCH: A Novel Bias-mitigated Multimodal Oxygen Monitor
SCH:一种新型的消除偏差的多模式氧监测仪
- 批准号:
10816771 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
SCH: Artificial Intelligence enabled multi-modal sensor platform for at-home health monitoring of patients
SCH:人工智能支持的多模式传感器平台,用于患者的家庭健康监测
- 批准号:
10816667 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
SCH: Neonatal Facial Coding for Pain Recognition Monitoring System (PRAMS)
SCH:新生儿面部编码疼痛识别监测系统 (PRAMS)
- 批准号:
2205472 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant