Biomedical Data Science Training Program

生物医学数据科学培训计划

基本信息

  • 批准号:
    10428454
  • 负责人:
  • 金额:
    $ 37.29万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-08 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Jackson State University (JSU) proposes to develop a Biomedical Data Science Training Program (BDS-TP) to train the next generation of scientists to address the monumental challenge associated with the curation, integration, analysis, and interpretation of biomedical big data. This training program will strengthen the biomedical research infrastructure of the newly established RCMI Center for Health Disparities Research at JSU. With a special emphasis on the use and management of health disparities datasets representing multiple levels and domains of influence articulated in the National Institute of Minority Health and Health Disparities (NIMHD) Research Framework, the above-stated goal of the BDS-TP will be accomplished through two specific aims that include: 1) Forster Collaborations between biomedical data scientists and BDS-TP participants and RCHDR investigators. Approach: Identify and invite renowned scientists with expertise in specific areas of BDS to serve as leaders/instructors of specific BSD-TP training modules, and facilitate multidisciplinary collaborations; and 2) Build the capacity of JSU and other Mississippi’s HBCU- Historically Black Colleges and Universities (Alcorn State University, Mississippi Valley State University, and Tugaloo College) in biomedical data science. Approach: Organize Train-the-Trainer bootcamps to train the STEM (science, technology, engineering and technology) faculty and post-doctoral research fellows on how to apply cutting-edge data science techniques to different biomedical data types, how to use Galaxy and computational resources like Jupyter Hub, and coding with R, Python, and other data science tools such R-Studio, Galaxy, or Carpentries; and organize Codeathons focused on specific biomedical topics using various types of datasets. The achievements of these specific aims will significantly enhance the data science skills of program participants, ranging from basic best practices in data collection, curation and analysis to complex computational techniques like machine learning and artificial intelligence that are critical for advancing the science of minority health and health disparities.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul B. Tchounwou其他文献

Evaluation of pancreatic δ- cells as a potential target site of graphene oxide toxicity in Japanese medaka (emOryzias latipes/em) fish
日本青鳉鱼胰腺δ细胞作为氧化石墨烯毒性潜在靶点的评估
  • DOI:
    10.1016/j.ecoenv.2023.114649
  • 发表时间:
    2023-03-15
  • 期刊:
  • 影响因子:
    6.100
  • 作者:
    Asok K. Dasmahapatra;Paul B. Tchounwou
  • 通讯作者:
    Paul B. Tchounwou
Correction to: Study of hepatotoxicity and oxidative stress in male Swiss-Webster mice exposed to functionalized multiwalled carbon nanotubes
  • DOI:
    10.1007/s11010-024-04974-6
  • 发表时间:
    2024-05-10
  • 期刊:
  • 影响因子:
    3.700
  • 作者:
    Anita K. Patlolla;Ashley Berry;Paul B. Tchounwou
  • 通讯作者:
    Paul B. Tchounwou
Influence of Taxonomy, Ecology, and Seasonality in River Stage on Fish Contamination Risks in Floodplain Swamps of the Lower Mississippi River
  • DOI:
    10.1023/a:1008811713427
  • 发表时间:
    1998-01-01
  • 期刊:
  • 影响因子:
    2.700
  • 作者:
    Henry L. Bart;Peter J. Martinat;Assaf Abdelghani;Paul B. Tchounwou;S. Lavern Taylor
  • 通讯作者:
    S. Lavern Taylor

Paul B. Tchounwou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul B. Tchounwou', 18)}}的其他基金

RCMI Center for Health Disparities Research
RCMI 健康差异研究中心
  • 批准号:
    10256720
  • 财政年份:
    2020
  • 资助金额:
    $ 37.29万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    10256721
  • 财政年份:
    2020
  • 资助金额:
    $ 37.29万
  • 项目类别:
RCMI Center for Health Disparities Research
RCMI 健康差异研究中心
  • 批准号:
    10402403
  • 财政年份:
    2020
  • 资助金额:
    $ 37.29万
  • 项目类别:
Strengthening the Biomedical Data Science Training Program at Jackson State University
加强杰克逊州立大学的生物医学数据科学培训计划
  • 批准号:
    10643192
  • 财政年份:
    2020
  • 资助金额:
    $ 37.29万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    10402404
  • 财政年份:
    2020
  • 资助金额:
    $ 37.29万
  • 项目类别:
Recovery-Based Relapse Prevention: Acceptability and Feasibility
基于恢复的复发预防:可接受性和可行性
  • 批准号:
    10429160
  • 财政年份:
    2020
  • 资助金额:
    $ 37.29万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    10640079
  • 财政年份:
    2020
  • 资助金额:
    $ 37.29万
  • 项目类别:
RCMI@Morgan: Center for Urban Health Disparities Research and Innovation
RCMI@摩根:城市健康差异研究与创新中心
  • 批准号:
    10593890
  • 财政年份:
    2019
  • 资助金额:
    $ 37.29万
  • 项目类别:
NMR CORE FACILITY
核磁共振核心设施
  • 批准号:
    9360280
  • 财政年份:
    2015
  • 资助金额:
    $ 37.29万
  • 项目类别:
ANIMAL CORE FACILITY
动物核心设施
  • 批准号:
    9360277
  • 财政年份:
    2015
  • 资助金额:
    $ 37.29万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 37.29万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.29万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 37.29万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.29万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 37.29万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 37.29万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.29万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 37.29万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 37.29万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.29万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了