Single cell characterization of the biomaterial immune and stromal response

生物材料免疫和基质反应的单细胞表征

基本信息

  • 批准号:
    10431933
  • 负责人:
  • 金额:
    $ 61.23万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-06 至 2024-04-30
  • 项目状态:
    已结题

项目摘要

Profiling single cells using single cell RNA sequencing (scRNAseq) is revolutionizing our understanding of development and disease. In this proposal, we will apply scRNAseq to create an atlas of cells that respond to biomaterials that induce divergent responses and serve as a model for tissue microenvironments of repair versus fibrosis. The proposed research aims to leverage single cell analysis to define key subpopulations in the lymphoid, myeloid and stromal fibroblasts response to biomaterial models of tissue fibrosis and repair. Minimally processed biological scaffolds induce a Type 2 immune response characterized by interleukin (IL)-4 and tissue repair, similar to muscle repair processes. Our preliminary data describes a Type 17 immune and senescent cell response to synthetic implants that induce fibrotic capsule formation in an IL-17-dependent manner. We also demonstrate the ability of scRNASeq to uncover new macrophage cell populations in biomaterial microenvironments. We hypothesize that by sorting cell subpopulations in the FBR in vivo, combined with single cell analysis, we will identify new and rare populations that will help elucidate mechanisms and provide new therapeutic targets to enhance tissue repair or reduce fibrosis. The following specific aims are proposed to accomplish this goal: Specific Aim 1. Identify and characterize lymphoid, myeloid, and fibroblast subpopulations isolated from synthetic and biological scaffold implants using single cell RNA sequencing analysis. Specific Aim 2. Computationally phenotype cell clusters both within and across cell types to define distinct subsets and interaction models using pseudotime analysis, RNA velocity, differential expression and gene set enrichment, cluster analysis to predict unique surface markers/combinations, and cell interactions analysis. Specific Aim 3. Define unique surface and intracellular markers from single cell analysis to identify subpopulations using standard experimental methods. Newly-identified immune and fibroblast subpopulations will be evaluated over time in male and female mice and results will be validated with diverse materials. The cell atlas created in the proposed research will enable future mechanistic studies and investigation into the potential broad applicability to wound healing, cancer and other tissue pathologies.
使用单细胞RNA测序(scRNAseq)分析单细胞正在彻底改变我们对 发展和疾病。在这项提案中,我们将应用scRNAseq创建一个细胞图谱, 诱导不同反应并作为修复组织微环境模型的生物材料 对比纤维化。拟议的研究旨在利用单细胞分析来定义关键亚群, 淋巴、骨髓和基质成纤维细胞对组织纤维化和修复的生物材料模型的反应。 最低限度加工的生物支架诱导以白细胞介素(IL)-4为特征的2型免疫应答 和组织修复,类似于肌肉修复过程。我们的初步数据描述了17型免疫, 衰老细胞对诱导IL-17依赖性纤维化囊形成的合成植入物的反应 方式我们还证明了scRNASeq在肿瘤细胞中发现新的巨噬细胞群的能力。 生物材料微环境我们假设通过在体内对FBR中的细胞亚群进行分选, 结合单细胞分析,我们将确定新的和罕见的群体,这将有助于阐明 机制并提供新的治疗靶点以增强组织修复或减少纤维化。以下 为实现这一目标提出了具体目标: 具体目标1.鉴别和表征从以下组织中分离的淋巴样、骨髓样和成纤维细胞亚群: 使用单细胞RNA测序分析合成和生物支架植入物。 具体目标2。在细胞类型内和跨细胞类型计算表型细胞簇,以定义不同的 使用伪时间分析、RNA速度、差异表达和基因集的子集和相互作用模型 富集、聚类分析以预测独特的表面标志物/组合和细胞相互作用分析。 具体目标3。从单细胞分析中定义独特的表面和细胞内标志物,以识别 亚群使用标准实验方法。新鉴定的免疫和成纤维细胞亚群 将在雄性和雌性小鼠中随时间进行评价,并将使用不同材料验证结果。 在拟议的研究中创建的细胞图谱将使未来的机制研究和调查成为可能。 对伤口愈合、癌症和其它组织病理学的潜在广泛适用性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JENNIFER H ELISSEEFF其他文献

JENNIFER H ELISSEEFF的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JENNIFER H ELISSEEFF', 18)}}的其他基金

Administrative Core
行政核心
  • 批准号:
    10556889
  • 财政年份:
    2022
  • 资助金额:
    $ 61.23万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    10673113
  • 财政年份:
    2022
  • 资助金额:
    $ 61.23万
  • 项目类别:
Single cell characterization of the biomaterial immune and stromal response
生物材料免疫和基质反应的单细胞表征
  • 批准号:
    10230987
  • 财政年份:
    2020
  • 资助金额:
    $ 61.23万
  • 项目类别:
Single cell characterization of the biomaterial immune and stromal response
生物材料免疫和基质反应的单细胞表征
  • 批准号:
    10617307
  • 财政年份:
    2020
  • 资助金额:
    $ 61.23万
  • 项目类别:
Biomaterials-directed regenerative immunotherapies
生物材料导向的再生免疫疗法
  • 批准号:
    10697362
  • 财政年份:
    2019
  • 资助金额:
    $ 61.23万
  • 项目类别:
Biomaterials-directed regenerative immunotherapies
生物材料导向的再生免疫疗法
  • 批准号:
    10023168
  • 财政年份:
    2019
  • 资助金额:
    $ 61.23万
  • 项目类别:
Develop BCL-xL proteolysis targeting chimeras as safer and better senolytics
开发针对嵌合体的 BCL-xL 蛋白水解作为更安全、更好的 senolytics
  • 批准号:
    10375406
  • 财政年份:
    2019
  • 资助金额:
    $ 61.23万
  • 项目类别:
Biomaterials-directed regenerative immunotherapies
生物材料导向的再生免疫疗法
  • 批准号:
    10251325
  • 财政年份:
    2019
  • 资助金额:
    $ 61.23万
  • 项目类别:
Develop BCL-xL proteolysis targeting chimeras as safer and better senolytics
开发针对嵌合体的 BCL-xL 蛋白水解作为更安全、更好的 senolytics
  • 批准号:
    10599230
  • 财政年份:
    2019
  • 资助金额:
    $ 61.23万
  • 项目类别:
Statistical optimization of self-assembled biosynthetic cornea implants
自组装生物合成角膜植入物的统计优化
  • 批准号:
    9913555
  • 财政年份:
    2018
  • 资助金额:
    $ 61.23万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 61.23万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 61.23万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 61.23万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 61.23万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 61.23万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 61.23万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 61.23万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 61.23万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 61.23万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 61.23万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了