Data Management and Statistical Core
数据管理与统计核心
基本信息
- 批准号:10439580
- 负责人:
- 金额:$ 43.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsAlzheimer&aposs DiseaseAlzheimer&aposs disease related dementiaApplications GrantsBasic ScienceBiological MarkersBrainChargeClinicalClinical ResearchClinical TrialsClinical Trials DesignCollaborationsCommunitiesComputer softwareConsultationsCustomDataData AnalysesData AnalyticsData SetData Storage and RetrievalDatabasesDevelopmentEnsureEvaluationGeneticGenomicsHeterogeneityImpaired cognitionIndividualInformaticsInformation ManagementIntervention TrialMaintenanceMeasuresMentorsMethodsMulticenter StudiesParticipantPilot ProjectsPopulation ResearchProcessProteomicsRandomizedRegistriesReportingReproducibilityResearchResearch DesignResearch PersonnelResearch Project GrantsResolutionResourcesSecureServicesSourceSpecimenStandardizationStatistical Data InterpretationStatistical MethodsStatistical ModelsSumSystemTechnologyTimeTrainingTraining ProgramsTranslational ResearchVisualizationVisualization softwarealgorithmic methodologiesanalytical methodcohortcomputational platformdata acquisitiondata exchangedata managementdata sharingdata visualizationdata warehousedesigndisease heterogeneityelectronic datainnovationinsightmachine learning methodmultidimensional dataneuroimagingnovelopen sourcepsychosocialrisk prediction modelskillssocial mediastatisticssynergismtooltranslational impacttranslational pipelineweb site
项目摘要
ABSTRACT- DATA MANAGEMENT & STATISTICS (DMS) CORE
The Data Management and Statistical (DMS) Core supports the NYU Alzheimer's Disease Research Center
(ADRC) and its Cores by providing state-of-the-art data and information management and statistical expertise.
The DMS Core aims to provide cutting edge research data management (AIM 1), by providing a customized,
comprehensive and scalable data acquisition and management platform in REDCap and provide scalable
technologies like Tableau for data visualization. The core will maintain unique linkages between the participants
and their data captured from other core's activities and from various collaborative/ affiliated studies, including
incorporating the global unique identifier (GUID) to streamline data collaborations between centers. DMS will
continue its inter core collaboration by, maintaining the database in collaboration; maintaining a dynamic registry;
maintaining standardized brain measures in the database; providing informatics and statistical collaboration for
the BMS core. The core will continue to provide scalable storage solutions and be the conduit to share data with
researchers and collaborators through latest tools and new systems. DMS will also interface with NACC to
implement data acquisition forms, submit UDS data in a timely manner and be swiftly handle query resolution.
DMS will continue to develop and implement innovative tools to incorporate various data sets including the vast
“-omics” data and also make the tools available to the wider research community through our website and social
media.
The DMS Core also aims to provide state-of-the-art statistical support (AIM 2) and promote scientific rigor,
by providing comprehensive statistical collaboration and consultation to all the Cores at NYU ADRC across the
entire spectrum of the translational research process of study design, conduct, analysis, visualization,
interpretation, and reporting of clinical, translational, and population-based research. DMS core will develop
innovative study designs and new statistical methods to address emerging research directions undertaken by
ADRC investigators that include developing new statistical models and methods to deal with latent
heterogeneities in ADRD, effective risk prediction models with variable selection, novel machine learning
methods for high dimensional data, and open platform computing algorithms and R packages. Finally, the DMS
Core mentors center affiliated young investigators and trainees in addition to promoting scientific rigor with
extensive statistical support, facilitating collaboration and optimizing resources with cutting edge data
management, and magnifying the impact of findings by promoting reproducible research and data sharing.
摘要 - 数据管理与统计(DMS)核心
数据管理和统计(DMS)核心支持NYU阿尔茨海默氏病研究中心
(ADRC)及其核心通过提供最先进的数据和信息管理以及统计专业知识。
DMS Core旨在通过提供定制的,
REDCAP中的全面,可扩展的数据获取和管理平台,并提供可扩展的
诸如Tableau的技术可视化。核心将保持参与者之间的独特联系
以及他们从其他核心活动以及各种协作/会员研究中捕获的数据,包括
将全球唯一标识符(GUID)纳入中心之间的数据协作。 DMS会
通过协作维护数据库来继续其间核心协作;保持动态注册表;
在数据库中维持标准化的大脑测量;为信息提供信息和统计合作
BMS核心。核心将继续提供可扩展的存储解决方案,并成为与
研究人员和合作者通过最新的工具和新系统。 DMS还将与NACC接口到
实施数据采集表,及时提交UDS数据,并迅速处理查询分辨率。
DMS将继续开发和实施创新工具,以合并包括疫苗在内的各种数据集
“ -omics”数据,还通过我们的网站和社会使更广泛的研究社区提供工具
媒体。
DMS核心还旨在提供最先进的统计支持(AIM 2)并促进科学严谨,
通过向NYU ADRC的所有核心提供全面的统计合作和咨询
研究设计,行为,分析,可视化的翻译研究过程的全部范围
临床,转化和基于人群的研究的解释和报告。 DMS核心将发展
创新的研究设计和新的统计方法,以解决由
ADRC调查人员包括开发新的统计模型和方法来处理潜在
ADRD中的异质性,有效的风险预测模型,具有可变选择,新颖的机器学习
高维数据的方法以及打开平台计算算法和R软件包。最后,DMS
核心导师中心会员年轻调查员和学员,除了促进科学严谨性
广泛的统计支持,支持协作并通过最先进数据优化资源
管理和通过促进可重复的研究和数据共享来放大发现的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yongzhao Shao其他文献
Yongzhao Shao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yongzhao Shao', 18)}}的其他基金
相似国自然基金
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于物理信息神经网络的电磁场快速算法研究
- 批准号:52377005
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
- 批准号:12302257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向高维不平衡数据的分类集成算法研究
- 批准号:62306119
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 43.06万 - 项目类别:
Traumatic Brain Injury Anti-Seizure Prophylaxis in the Medicare Program
医疗保险计划中的创伤性脑损伤抗癫痫预防
- 批准号:
10715238 - 财政年份:2023
- 资助金额:
$ 43.06万 - 项目类别:
Brain Digital Slide Archive: An Open Source Platform for data sharing and analysis of digital neuropathology
Brain Digital Slide Archive:数字神经病理学数据共享和分析的开源平台
- 批准号:
10735564 - 财政年份:2023
- 资助金额:
$ 43.06万 - 项目类别:
Enhanced Medication Management to Control ADRD Risk Factors Among African Americans and Latinos
加强药物管理以控制非裔美国人和拉丁裔的 ADRD 风险因素
- 批准号:
10610975 - 财政年份:2023
- 资助金额:
$ 43.06万 - 项目类别:
Information-Theoretic Surprise-Driven Approach to Enhance Decision Making in Healthcare
信息论惊喜驱动方法增强医疗保健决策
- 批准号:
10575550 - 财政年份:2023
- 资助金额:
$ 43.06万 - 项目类别: