Core C - Biostatistics & Bioinformatics Core

核心 C - 生物统计学

基本信息

  • 批准号:
    10200699
  • 负责人:
  • 金额:
    $ 27.69万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-19 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY The Biostatistics and Bioinformatics Core (Core C) of the NYU Melanoma SPORE will provide statistical and bioinformatics collaboration and consultation to all SPORE Research Projects and Cores. Consultation is available from the study design and planning stages through implementation, data management, statistical and bioinformatics analysis, and interpretation of results. Core C will provide support for all proposed laboratory studies and translational studies, including biomarker development based on samples from existing and new clinical trials to support the overarching mission and central scientific strategy of the NYU Melanoma SPORE. Furthermore, strategies for the systematic selection of samples from all the projects and the coordination of informatics support in Core C will permit the overall integration of results across projects to develop comprehensive models to predict treatment outcomes and toxicity. Core C draws on and integrates an extensive fund of knowledge, resources, and expertise across the NYU Langone Medical Center (NYULMC) and NYU Perlmutter Cancer Center (PCC) to serve the NYU Melanoma SPORE. Co-Director Dr. Yongzhao Shao is Deputy Director of the PCC Biostatistics Shared Resource (BSR) and Dr. Itai Yanai is the Director of the Institute for Computational Medicine, respectively, and will provide integrated biostatistical and bioinformatics support and ensure maximum utilization of all institutional resources and facilities. This will empower the provision of expertise in all aspects of statistical design; power/sample size calculations; systematic sample selection strategies for efficient data integration and analyses; and integration of data from multiple sources including laboratory data, clinical data, and data from diverse sequencing platforms. Core C will develop innovative statistical and bioinformatics methods, including scalable computation algorithms, for identifying and evaluating biomarkers in translational studies, and will make these newly developed algorithms publicly available to the larger cancer research community. In particular, Core C’s identification of biomarkers that may optimize the personalized management of advanced melanoma patients will enable the development of integrated, multivariable predictive models for treatment response and toxicity. This work, based on biomarkers discovered across SPORE Projects, will contribute to personalized melanoma management and amplify the translational impact of the NYU Melanoma SPORE.
项目摘要 纽约大学黑色素瘤孢子的生物统计学和生物信息学核心(核心C)将提供统计和 为所有SPORE研究项目和核心提供生物信息学合作和咨询。协商是 从研究设计和规划阶段到实施、数据管理、统计和 生物信息学分析和结果解释。核心C将为所有拟议实验室提供支持 研究和转化研究,包括基于现有和新的样本的生物标志物开发 临床试验,以支持纽约大学黑色素瘤孢子的总体使命和中心科学战略。 此外,还提出了从所有项目中系统地选择样本和协调 核心C中的信息学支持将允许跨项目结果的整体整合, 预测治疗结果和毒性的综合模型。Core C借鉴并集成了广泛的 纽约大学朗格尼医学中心(NYULMC)和纽约大学的知识、资源和专业知识基金 Perlmutter癌症中心(PCC)为纽约大学黑色素瘤孢子服务。联合主任邵永昭博士是 PCC生物统计共享资源(BSR)副主任,Itai柳井博士是研究所所长 分别为计算医学,并将提供综合的生物统计和生物信息学支持 并确保最大限度地利用所有机构资源和设施。这将授权提供 统计设计各方面的专业知识;功效/样本量计算;系统样本选择 有效的数据整合和分析战略;以及整合来自多个来源的数据,包括 实验室数据、临床数据和来自不同测序平台的数据。核心C将开发创新 统计和生物信息学方法,包括可扩展的计算算法,用于识别和评估 生物标志物的翻译研究,并将使这些新开发的算法公开提供给 更大的癌症研究社区特别是,核心C的生物标志物的鉴定,可以优化 晚期黑色素瘤患者的个性化管理将使得能够开发综合的, 治疗反应和毒性的多变量预测模型。这项工作,基于生物标志物发现, 在整个孢子项目,将有助于个性化的黑色素瘤管理和放大翻译 纽约大学黑色素瘤孢子的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yongzhao Shao其他文献

Yongzhao Shao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yongzhao Shao', 18)}}的其他基金

Data Management and Statistical Core
数据管理与统计核心
  • 批准号:
    10439580
  • 财政年份:
    2020
  • 资助金额:
    $ 27.69万
  • 项目类别:
Data Management and Statistical Core
数据管理与统计核心
  • 批准号:
    10643930
  • 财政年份:
    2020
  • 资助金额:
    $ 27.69万
  • 项目类别:
Biostatistics/Bioinformatics Core
生物统计学/生物信息学核心
  • 批准号:
    10428583
  • 财政年份:
    2020
  • 资助金额:
    $ 27.69万
  • 项目类别:
Biostatistics/Bioinformatics Core
生物统计学/生物信息学核心
  • 批准号:
    10621834
  • 财政年份:
    2020
  • 资助金额:
    $ 27.69万
  • 项目类别:
Core C - Biostatistics & Bioinformatics Core
核心 C - 生物统计学
  • 批准号:
    10434086
  • 财政年份:
    2019
  • 资助金额:
    $ 27.69万
  • 项目类别:
Core C - Biostatistics & Bioinformatics Core
核心 C - 生物统计学
  • 批准号:
    10652339
  • 财政年份:
    2019
  • 资助金额:
    $ 27.69万
  • 项目类别:
Data Management and Statistical Core
数据管理与统计核心
  • 批准号:
    9750584
  • 财政年份:
  • 资助金额:
    $ 27.69万
  • 项目类别:
Data Management and Statistical Core
数据管理与统计核心
  • 批准号:
    9921988
  • 财政年份:
  • 资助金额:
    $ 27.69万
  • 项目类别:
Core C - Biostatistics & Bioinformatics Core
核心 C - 生物统计学
  • 批准号:
    9980830
  • 财政年份:
  • 资助金额:
    $ 27.69万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 27.69万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 27.69万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 27.69万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 27.69万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 27.69万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 27.69万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 27.69万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 27.69万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 27.69万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 27.69万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了