Data Management and Statistical Core
数据管理与统计核心
基本信息
- 批准号:10643930
- 负责人:
- 金额:$ 45.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsAlzheimer&aposs DiseaseAlzheimer&aposs disease related dementiaApplications GrantsBasic ScienceBiological MarkersBrainChargeClinicalClinical TrialsClinical Trials DesignCollaborationsCommunitiesComputer softwareConsultationsDataData AnalysesData AnalyticsData SetData Storage and RetrievalDatabasesDevelopmentEnsureEvaluationGeneticGenomicsHeterogeneityImpaired cognitionIndividualInformaticsInformation ManagementInterventionMaintenanceMeasuresMentorsMethodsMulticenter StudiesParticipantPilot ProjectsPopulation ResearchProcessProteomicsRandomizedRegistriesReportingReproducibilityResearchResearch DesignResearch PersonnelResearch Project GrantsResolutionResourcesSecureServicesSourceSpecimenStandardizationStatistical Data InterpretationStatistical MethodsStatistical ModelsSumSystemTechnologyTrainingTraining ProgramsTranslational ResearchVisualizationVisualization softwareanalytical methodcohortcomputational platformdata acquisitiondata exchangedata managementdata sharingdata visualizationdata warehousedesigndisease heterogeneityelectronic datainnovationinsightmachine learning methodmultidimensional dataneuroimagingnovelopen sourcepsychosocialrisk prediction modelskillssocial mediastatisticssynergismtooltranslational impacttranslational pipelinetransmission processweb site
项目摘要
ABSTRACT- DATA MANAGEMENT & STATISTICS (DMS) CORE
The Data Management and Statistical (DMS) Core supports the NYU Alzheimer's Disease Research Center
(ADRC) and its Cores by providing state-of-the-art data and information management and statistical expertise.
The DMS Core aims to provide cutting edge research data management (AIM 1), by providing a customized,
comprehensive and scalable data acquisition and management platform in REDCap and provide scalable
technologies like Tableau for data visualization. The core will maintain unique linkages between the participants
and their data captured from other core's activities and from various collaborative/ affiliated studies, including
incorporating the global unique identifier (GUID) to streamline data collaborations between centers. DMS will
continue its inter core collaboration by, maintaining the database in collaboration; maintaining a dynamic registry;
maintaining standardized brain measures in the database; providing informatics and statistical collaboration for
the BMS core. The core will continue to provide scalable storage solutions and be the conduit to share data with
researchers and collaborators through latest tools and new systems. DMS will also interface with NACC to
implement data acquisition forms, submit UDS data in a timely manner and be swiftly handle query resolution.
DMS will continue to develop and implement innovative tools to incorporate various data sets including the vast
“-omics” data and also make the tools available to the wider research community through our website and social
media.
The DMS Core also aims to provide state-of-the-art statistical support (AIM 2) and promote scientific rigor,
by providing comprehensive statistical collaboration and consultation to all the Cores at NYU ADRC across the
entire spectrum of the translational research process of study design, conduct, analysis, visualization,
interpretation, and reporting of clinical, translational, and population-based research. DMS core will develop
innovative study designs and new statistical methods to address emerging research directions undertaken by
ADRC investigators that include developing new statistical models and methods to deal with latent
heterogeneities in ADRD, effective risk prediction models with variable selection, novel machine learning
methods for high dimensional data, and open platform computing algorithms and R packages. Finally, the DMS
Core mentors center affiliated young investigators and trainees in addition to promoting scientific rigor with
extensive statistical support, facilitating collaboration and optimizing resources with cutting edge data
management, and magnifying the impact of findings by promoting reproducible research and data sharing.
摘要-数据管理与统计(dms)核心
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yongzhao Shao其他文献
Yongzhao Shao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yongzhao Shao', 18)}}的其他基金
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 45.1万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 45.1万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 45.1万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 45.1万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 45.1万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 45.1万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 45.1万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 45.1万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 45.1万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 45.1万 - 项目类别:
Continuing Grant














{{item.name}}会员




