Dissecting and modifying temporal dynamics underlying major depressive disorder
剖析和修改重度抑郁症背后的时间动态
基本信息
- 批准号:10441495
- 负责人:
- 金额:$ 68.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAmygdaloid structureAntidepressive AgentsAnxietyAnxiety DisordersBehaviorBehavior ControlBehavioralBrainBrain DiseasesBrain regionCellsChronicCodeCognitionCognitiveCollectionCommunitiesCouplingDataDevelopmentDiseaseDisease modelEmotionalEmotionsEtiologyExhibitsFrequenciesFunctional disorderGene ExpressionGeneticHealthHippocampus (Brain)HumanImpairmentIndividualLinkLocationMachine LearningMajor Depressive DisorderMeasuresMediatingMemoryMental DepressionMental disordersMethodsModelingMolecularMonitorMood DisordersMusNeuronsNucleus AccumbensOutcomePlayPre-Clinical ModelPrefrontal CortexResearchRodentRodent ModelRoleSchizophreniaSignal TransductionSiteSocial BehaviorSocial FunctioningStressTechniquesTestingThalamic structureTherapeutic InterventionTimeValidationVentral Tegmental AreaViralWorkautism spectrum disorderbasecell typecognitive functiondepression modeldepressive symptomsemotional functioninghuman imagingimaging studyin vivomillisecondmouse modelmultidisciplinarynetwork modelsneuromechanismnovelnovel therapeuticsoptogeneticspreclinical studyrelating to nervous systemreward processingsocial defeatspatiotemporaltool
项目摘要
Title: Dissecting and modifying temporal dynamics underlying major depressive disorder
Multiple human imaging studies have described aberrant spatiotemporal dynamics in specific
brain networks across subjects with major depressive disorder. Furthermore, rodent studies
have identified dysfunctional synchrony across cortical limbic circuits in genetic and stress-
induced models of major depressive disorder. Nevertheless, it remains to be clarified whether
these observed changes in neural dynamics play a causal role or simply reflect (i.e., correlate
with) the behavioral-state observed in major depressive disorder. Several major challenges to
addressing this question exist. 1) The brain synchronizes dynamics across multiple timescales.
Rodent studies classically monitor dynamics at the millisecond time scale (reflecting circuits),
and human studies typically monitor brain dynamics at the seconds time scale (reflect circuit
and network level activity). 2) Rodent studies are generally limited in their ability to monitor
large-scale activity from many brain regions concurrently, while human imaging studies observe
activity across the whole brain. 3) To our knowledge, few approaches/models integrate changes
in cell-type specific gene expression implicated in depression to changes in circuit and network-
specific brain dynamics. 4) Techniques which directly manipulate brain dynamics (neural
synchrony and cross-frequency coupling) have yet to be largely implemented throughout the
rodent research community. To address these challenges, we propose to perform multi-circuit in
vivo neural recordings in the two widely used rodent models of depression. We will then utilize
machine learning to determine the spatiotemporal dynamic alterations that are shared between
the two models. Next, we will test whether cellular molecular manipulations implicated in major
depressive disorder are sufficient to induce the same spatiotemporal dynamic alterations.
Finally, we will verify that these spatiotemporal dynamics are causal by directly inducing and
suppressing them and measuring their impact on behavior. This strategy will yield an
unprecedented understanding of how altered dynamics within specific brain circuits contribute to
depression.
标题:重性抑郁障碍的时间动力学分析与修正
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kafui Dzirasa其他文献
Kafui Dzirasa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kafui Dzirasa', 18)}}的其他基金
Precision editing of neural circuits using engineered electrical synapses
使用工程电突触精确编辑神经回路
- 批准号:
10487711 - 财政年份:2022
- 资助金额:
$ 68.46万 - 项目类别:
Precision editing of neural circuits using engineered electrical synapses
使用工程电突触精确编辑神经回路
- 批准号:
10700919 - 财政年份:2022
- 资助金额:
$ 68.46万 - 项目类别:
Dissecting and modifying temporal dynamics underlying major depressive disorder
剖析和修改重度抑郁症背后的时间动态
- 批准号:
10085101 - 财政年份:2020
- 资助金额:
$ 68.46万 - 项目类别:
Dissecting and modifying temporal dynamics underlying major depressive disorder
剖析和修改重度抑郁症背后的时间动态
- 批准号:
10226122 - 财政年份:2019
- 资助金额:
$ 68.46万 - 项目类别:
Dissecting and modifying temporal dynamics underlying major depressive disorder
剖析和修改重度抑郁症背后的时间动态
- 批准号:
10670070 - 财政年份:2019
- 资助金额:
$ 68.46万 - 项目类别:
Dissecting and modifying temporal dynamics underlying major depressive disorder
剖析和修改重度抑郁症背后的时间动态
- 批准号:
10004169 - 财政年份:2019
- 资助金额:
$ 68.46万 - 项目类别:
A fully biological platform for monitoring mesoscale neural activity
用于监测中尺度神经活动的全生物平台
- 批准号:
9764377 - 财政年份:2018
- 资助金额:
$ 68.46万 - 项目类别:
Characterizing sensorimotor gaiting dysfunction in mouse models of schizophrenia
精神分裂症小鼠模型感觉运动步态功能障碍的特征
- 批准号:
8582022 - 财政年份:2013
- 资助金额:
$ 68.46万 - 项目类别:
Characterizing sensorimotor gaiting dysfunction in mouse models of schizophrenia
精神分裂症小鼠模型感觉运动步态功能障碍的特征
- 批准号:
8701406 - 财政年份:2013
- 资助金额:
$ 68.46万 - 项目类别:














{{item.name}}会员




