Precision editing of neural circuits using engineered electrical synapses

使用工程电突触精确编辑神经回路

基本信息

  • 批准号:
    10700919
  • 负责人:
  • 金额:
    $ 112.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-08 至 2027-05-31
  • 项目状态:
    未结题

项目摘要

Title: Precision editing of neural circuits using engineered electrical synapses Pioneering approaches including optogenetics and designer receptors exclusively activated by designer drugs (DREADDs) enable the direct modulation of the activity of individual genetically defined cell types. Nevertheless, it remains a fundamental challenge to selectively regulate the hallmark feature of neural circuits: the interface between two specific brain cells. To address this challenge, we have created a new approach, Long-term integration of circuits using Connexins (LinCx), that employs a novel pair of engineered connexin hemichannels to directly modulate genetically defined neural circuits. When each member of the hemichannel pair is expressed in two different cell(s)/cell-types that compose a circuit, they engage in heterotypic docking (docking with each other) and an electrical synapse is constituted between the two cells. These pair of hemichannels is engineered 1) to prevent them from engaging in homotypic docking (forming electrical synapses with themselves), and 2) to disrupt them from docking with other connexin hemichannels endogenously expressed in the mammalian brain. Finally, 3) the hemichannel pair exhibits rectification. Together, these three properties confer LinCx with unprecedented spatial-, temporal-, and context precision, enabling the precise editing of neural circuits. We propose to deploy LinCx across model organisms. We will determine the impact of LinCx neuromodulation on neural circuit physiology and emotional behavior. We will also test whether LinCx modulation is sufficient to restore normal behavior in animal models of psychiatric disorders. Successful completion of these high-risk experiments will yield a new method for long-term circuit editing to regulate emotional states in preclinical models. In the future, LinCx can be integrated with emerging viral tools that enable systemic delivery of genetically encoded proteins to specific brain cell-types. Thus, LinCx also has an attainable path to human translation for ameliorating devastating psychiatric disorders.
标题:使用工程电突触精确编辑神经电路 开创性的方法,包括光遗传学和设计师受体专门激活 设计药物(DREADDs)能够直接调节个体遗传活性, 定义的细胞类型。尽管如此,有选择地监管这些机构仍然是一个根本性的挑战。 神经回路的标志性特征:两个特定脑细胞之间的界面。为了解决这个 挑战,我们创造了一种新的方法,使用连接蛋白的电路长期集成 (LinCx),其采用一对新的工程化连接蛋白半通道来直接调节 基因定义的神经回路当半通道对的每个成员被表达为 两种不同的细胞/细胞类型组成一个回路,它们参与异型对接 (彼此对接)并且在两个细胞之间构成电突触。这些 一对半通道被工程化1)以防止它们参与同型对接 (与自身形成电突触),以及2)破坏它们与其他 连接蛋白半通道在哺乳动物脑中内源性表达。(3)The 半通道对呈现整流。这三个属性共同赋予LinCx 前所未有的空间,时间和上下文精度,使神经网络的精确编辑 电路. 我们建议跨模式生物部署LinCx。我们将确定LinCx的影响 神经回路生理学和情绪行为的神经调节。我们还将测试 LinCx调节足以恢复精神疾病动物模型中的正常行为 紊乱这些高风险实验的成功完成将产生一种新的方法, 长期的电路编辑,以调节临床前模型中的情绪状态。在未来,LinCx 可以与新兴的病毒工具相结合, 特定脑细胞类型的蛋白质。因此,LinCx也有一条通往人类的可实现之路。 翻译来改善毁灭性的精神疾病。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kafui Dzirasa其他文献

Kafui Dzirasa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kafui Dzirasa', 18)}}的其他基金

Precision editing of neural circuits using engineered electrical synapses
使用工程电突触精确编辑神经回路
  • 批准号:
    10487711
  • 财政年份:
    2022
  • 资助金额:
    $ 112.7万
  • 项目类别:
Dissecting and modifying temporal dynamics underlying major depressive disorder
剖析和修改重度抑郁症背后的时间动态
  • 批准号:
    10085101
  • 财政年份:
    2020
  • 资助金额:
    $ 112.7万
  • 项目类别:
Dissecting and modifying temporal dynamics underlying major depressive disorder
剖析和修改重度抑郁症背后的时间动态
  • 批准号:
    10226122
  • 财政年份:
    2019
  • 资助金额:
    $ 112.7万
  • 项目类别:
Dissecting and modifying temporal dynamics underlying major depressive disorder
剖析和修改重度抑郁症背后的时间动态
  • 批准号:
    10670070
  • 财政年份:
    2019
  • 资助金额:
    $ 112.7万
  • 项目类别:
Dissecting and modifying temporal dynamics underlying major depressive disorder
剖析和修改重度抑郁症背后的时间动态
  • 批准号:
    10441495
  • 财政年份:
    2019
  • 资助金额:
    $ 112.7万
  • 项目类别:
Dissecting and modifying temporal dynamics underlying major depressive disorder
剖析和修改重度抑郁症背后的时间动态
  • 批准号:
    10004169
  • 财政年份:
    2019
  • 资助金额:
    $ 112.7万
  • 项目类别:
A fully biological platform for monitoring mesoscale neural activity
用于监测中尺度神经活动的全生物平台
  • 批准号:
    9764377
  • 财政年份:
    2018
  • 资助金额:
    $ 112.7万
  • 项目类别:
Characterizing sensorimotor gaiting dysfunction in mouse models of schizophrenia
精神分裂症小鼠模型感觉运动步态功能障碍的特征
  • 批准号:
    8582022
  • 财政年份:
    2013
  • 资助金额:
    $ 112.7万
  • 项目类别:
Characterizing sensorimotor gaiting dysfunction in mouse models of schizophrenia
精神分裂症小鼠模型感觉运动步态功能障碍的特征
  • 批准号:
    8701406
  • 财政年份:
    2013
  • 资助金额:
    $ 112.7万
  • 项目类别:
Enabling Stress Resistance
增强抗压能力
  • 批准号:
    9181453
  • 财政年份:
    2012
  • 资助金额:
    $ 112.7万
  • 项目类别:

相似海外基金

Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
  • 批准号:
    495434
  • 财政年份:
    2023
  • 资助金额:
    $ 112.7万
  • 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
  • 批准号:
    10586596
  • 财政年份:
    2023
  • 资助金额:
    $ 112.7万
  • 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
  • 批准号:
    10590479
  • 财政年份:
    2023
  • 资助金额:
    $ 112.7万
  • 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
  • 批准号:
    10642519
  • 财政年份:
    2023
  • 资助金额:
    $ 112.7万
  • 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
  • 批准号:
    23K06011
  • 财政年份:
    2023
  • 资助金额:
    $ 112.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
  • 批准号:
    10682117
  • 财政年份:
    2023
  • 资助金额:
    $ 112.7万
  • 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
  • 批准号:
    10708517
  • 财政年份:
    2023
  • 资助金额:
    $ 112.7万
  • 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
  • 批准号:
    10575566
  • 财政年份:
    2023
  • 资助金额:
    $ 112.7万
  • 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
  • 批准号:
    23K15696
  • 财政年份:
    2023
  • 资助金额:
    $ 112.7万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
  • 批准号:
    23K15867
  • 财政年份:
    2023
  • 资助金额:
    $ 112.7万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了