A fully biological platform for monitoring mesoscale neural activity
用于监测中尺度神经活动的全生物平台
基本信息
- 批准号:9764377
- 负责人:
- 金额:$ 22.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAnimal ModelAnimalsAreaAutologousAxonBindingBiocompatible MaterialsBiologicalBiomedical EngineeringBlood VesselsBrainCellsConnexinsDendritic SpinesDevelopmentDimensionsDiscriminationElectrical SynapseElectrodesFibrosisFutureGeometryGlassGoldGraphGrowthHumanImageImplantImplanted ElectrodesIndividualLightLongevityMetalsMethodsModelingMonitorMutagenesisNeuronsOpticsPeripheralProtein EngineeringProteinsResearch PersonnelResolutionSamplingSignal TransductionSiteSpinal GangliaStructureSurfaceTechniquesTechnologyTimeTissuesValidationVertebratesWorkangiogenesisawakebasebrain tissuecell typedesignhigh riskhuman modelin vivometallicitymicroendoscopeminiaturizenanoscaleneuronal cell bodynew technologynoveloptical imagingrelating to nervous systemsensortool
项目摘要
A fully biological platform for monitoring mesoscale neural activity
One of the barriers to understanding the human brain is due to its geometry. Accessing
brain tissue at single cell resolution has classically involved implanting electrodes (metallic or
optical) directly into the brain. For deep subcortical structures, these approaches result in tissue
destruction across the shallow brain areas that must be traversed to access deeper targets.
Thus, classic approaches are fundamentally unable to allow concurrent sampling of activity from
healthy fully intact tissue at all sites of the brain. While many novel technologies that exploit
miniaturized nanoscale recording electrodes will increase number of single cells that can be
recorded concurrently in the same brain, these approaches do not address the challenge raised
by the geometry of the brain.
We intend to develop a new technology to ‘functionally’ change the geometry of the brain
by biologically projecting neural activity onto a flat surface outside of the brain. This ‘biological
electrode’ will allow for the concurrent acquisition of single cell activity from all depths of fully
intact brain tissue in awake-behaving animals. Furthermore, this technology will offer several
advantages over currently available approaches: 1) Unlike metallic recording electrodes which
induce fibrosis at the metal-brain interface and ultimately diminish signal quality, the fully
biological electrode will allow investigators to stably monitor brain activity throughout the entire
lifespan of model organisms; 2) The biological patch will utilize engineered proteins to form
physical connections with target cell types. Thus, this technology will rival gold-standard in vivo
intracellular recording approaches such as glass-pipette patching; 3) Since the engineered
proteins that form the physical connections between the biological electrode and target cells can
be targeted to individual cellular compartments, the biological patch will allow neural activity to
be directly acquired from the soma, dendritic spines, and/or axons of single cells in a cell type
specific manner; 4) Finally, the biological patch will be readily scalable to allow for recordings
from 100,000s of single cells simultaneously. Thus, successful completion of this high-risk
project will revolutionize neural recordings across model species and humans.
用于监测中尺度神经活动的全生物平台
理解人脑的障碍之一是其几何形状。访问
单细胞分辨率的脑组织通常涉及植入电极(金属或
光学)直接进入大脑。对于深层皮层下结构,这些方法会导致组织
破坏浅层大脑区域,必须穿过这些区域才能到达更深的目标。
因此,经典方法从根本上无法允许对活动进行并发采样
大脑所有部位的健康、完整的组织。虽然许多新技术利用
微型纳米级记录电极将增加可记录的单细胞数量
在同一大脑中同时记录,这些方法并不能解决所提出的挑战
通过大脑的几何形状。
我们打算开发一种新技术来“功能性”改变大脑的几何形状
通过生物学将神经活动投射到大脑外部的平坦表面上。这种“生物
“电极”将允许同时采集各个深度的单细胞活动
清醒动物的完整脑组织。此外,该技术将提供多种
与当前可用方法相比的优点:1)与金属记录电极不同,金属记录电极
诱导金属-脑界面纤维化并最终降低信号质量,
生物电极将使研究人员能够在整个过程中稳定地监测大脑活动
模式生物的寿命; 2) 生物贴片将利用工程蛋白质形成
与目标细胞类型的物理连接。因此,该技术将与体内黄金标准相媲美
细胞内记录方法,例如玻璃移液管修补; 3)由于设计
形成生物电极和靶细胞之间物理连接的蛋白质可以
针对单个细胞区室,生物贴片将允许神经活动
直接从细胞类型中单个细胞的体细胞、树突棘和/或轴突获得
具体方式; 4)最后,生物补丁将很容易扩展以允许记录
同时从 100,000 个单细胞中提取。至此,这次高风险的工作顺利完成
该项目将彻底改变模型物种和人类的神经记录。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kafui Dzirasa其他文献
Kafui Dzirasa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kafui Dzirasa', 18)}}的其他基金
Precision editing of neural circuits using engineered electrical synapses
使用工程电突触精确编辑神经回路
- 批准号:
10487711 - 财政年份:2022
- 资助金额:
$ 22.94万 - 项目类别:
Precision editing of neural circuits using engineered electrical synapses
使用工程电突触精确编辑神经回路
- 批准号:
10700919 - 财政年份:2022
- 资助金额:
$ 22.94万 - 项目类别:
Dissecting and modifying temporal dynamics underlying major depressive disorder
剖析和修改重度抑郁症背后的时间动态
- 批准号:
10085101 - 财政年份:2020
- 资助金额:
$ 22.94万 - 项目类别:
Dissecting and modifying temporal dynamics underlying major depressive disorder
剖析和修改重度抑郁症背后的时间动态
- 批准号:
10226122 - 财政年份:2019
- 资助金额:
$ 22.94万 - 项目类别:
Dissecting and modifying temporal dynamics underlying major depressive disorder
剖析和修改重度抑郁症背后的时间动态
- 批准号:
10670070 - 财政年份:2019
- 资助金额:
$ 22.94万 - 项目类别:
Dissecting and modifying temporal dynamics underlying major depressive disorder
剖析和修改重度抑郁症背后的时间动态
- 批准号:
10441495 - 财政年份:2019
- 资助金额:
$ 22.94万 - 项目类别:
Dissecting and modifying temporal dynamics underlying major depressive disorder
剖析和修改重度抑郁症背后的时间动态
- 批准号:
10004169 - 财政年份:2019
- 资助金额:
$ 22.94万 - 项目类别:
Characterizing sensorimotor gaiting dysfunction in mouse models of schizophrenia
精神分裂症小鼠模型感觉运动步态功能障碍的特征
- 批准号:
8582022 - 财政年份:2013
- 资助金额:
$ 22.94万 - 项目类别:
Characterizing sensorimotor gaiting dysfunction in mouse models of schizophrenia
精神分裂症小鼠模型感觉运动步态功能障碍的特征
- 批准号:
8701406 - 财政年份:2013
- 资助金额:
$ 22.94万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 22.94万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 22.94万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 22.94万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 22.94万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 22.94万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 22.94万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 22.94万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 22.94万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 22.94万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 22.94万 - 项目类别:
Research Grant














{{item.name}}会员




