iPGDAC, An Integrative Proteogenomic Data Analysis Center for CPTAC
iPGDAC,CPTAC 综合蛋白质组数据分析中心
基本信息
- 批准号:10440591
- 负责人:
- 金额:$ 89.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAmino Acid SequenceAreaBase SequenceBenchmarkingBiologicalBiological AssayBiological MarkersBiological ModelsCancer BiologyCenter for Translational Science ActivitiesClinicalClinical DataClinical TrialsCollaborationsCommunitiesDataData AnalysesData SetDiseaseFundingGenomicsGoalsHumanImmunophenotypingIndividualKnowledgeLeadershipMalignant NeoplasmsMass Spectrum AnalysisMolecularNetwork-basedPathway AnalysisPathway interactionsPatientsPeptidesPhasePhenotypePlayPortraitsPost-Translational Modification SitePost-Translational Protein ProcessingPrognosisProteinsProteomicsPublishingQuality ControlResourcesRoleSamplingSpecific qualifier valueTechniquesTranslational ResearchTranslationsWorkbasecancer diagnosiscancer therapycancer typecandidate identificationcandidate markerclinical centerclinical translationclinically relevantcomputerized data processingcomputerized toolsdata integrationdata qualitydeep learningepigenomicsfunctional genomicsgenetic variantgenomic aberrationsgenomic predictorsimprovedinsightmachine learning algorithmnatural languagenovelpatient prognosispredictive modelingprogramsprotein biomarkersproteogenomicssuccesstargeted biomarkertooltool developmenttranscriptomicstreatment responsetumortumor-immune system interactionsverification and validationweb portalworking group
项目摘要
Project Summary
By combining mass spectrometry (MS)-based proteomics with genomics, epigenomics, and
transcriptomics, proteogenomics holds great potential to better illuminate cancer complexities than individual
‘omes. During the past 10 years, the Clinical Proteomics Tumor Analysis Consortium (CPTAC) has performed
comprehensive proteogenomic characterization of >1,500 tumors across 10 cancer types. These studies not
only yield novel biological and clinical insights into different cancer types but also produce valuable datasets and
computational tools that can be further used by the broad scientific community. The next phase of the CPTAC
program seeks to expand the current success to more cancer types and translational research focusing on
clinically relevant questions. Our integrative proteogenomic data analysis center (iPGDAC) is one of the current
CPTAC funded PGDACs. We have participated in the studies of all CPTAC cancer types and have played a
leading role in data analysis for several cancer types. This application seeks to continue and enhance our
contribution to the next phase of the CPTAC program. The overarching goal of our PGDAC is to accelerate the
translation of cancer proteogenomic data into better understanding of cancer biology and improved cancer
treatment. We will continue developing and improving our computing tools, workflows, and web portals that have
already been successfully used in the CPTAC studies for sequence-based and pathway/network-based
proteogenomic data integration. In addition, we will address unmet needs in post-translational modification
(PTM)-related analyses by using protein sequence and natural language-based deep learning techniques to
improve PTM peptide identification, to predict genomic variant impact on PTMs, and to connect PTM sites to
existing knowledge. Using unique tools from our team and cutting edge statistical inference and machine learning
algorithms, we will perform integrated analysis on proteogenomic data from the CPTAC studies to: 1) create a
comprehensive molecular and cellular portrait for each patient’s tumor; 2) identify and characterize molecular
and tumor microenvironment/immune subtypes; 3) prioritize functional genomic aberrations using
proteogenomic data; 4) reveal molecular mechanisms of cancer phenotypes; and 5) develop predictive models
for patient prognosis and treatment response. Our PGDAC brings to the CPTAC network a fully integrated,
completely established program with expertise in all the critical areas specified by the RFA. We have a proven
track record of leadership in computational proteogenomics and successful collaboration in the CPTAC network,
and we expect to broadly advance the field through this project.
项目摘要
通过将基于质谱(MS)的蛋白质组学与基因组学、表观基因组学和
转录组学,蛋白质基因组学具有很大的潜力,更好地阐明癌症的复杂性比个人
来吧在过去的10年里,临床蛋白质组学肿瘤分析联盟(CPTAC)进行了
10种癌症类型中超过1,500种肿瘤的全面蛋白基因组学表征。这些研究不
不仅产生对不同癌症类型的新的生物学和临床见解,而且还产生有价值的数据集,
这些计算工具可以被广泛的科学界进一步使用。CPTAC的下一阶段
该计划旨在将目前的成功扩大到更多的癌症类型和转化研究,重点是
临床相关问题。我们的整合蛋白基因组数据分析中心(iPGDAC)是目前
CPTAC资助了PGDAC。我们参与了所有CPTAC癌症类型的研究,
在几种癌症类型的数据分析中发挥主导作用。此应用程序旨在继续和加强我们的
为CPTAC计划的下一阶段做出贡献。我们的PGDAC的首要目标是加快
将癌症蛋白基因组学数据转化为更好地理解癌症生物学和改善癌症
治疗我们将继续开发和改进我们的计算工具、工作流程和门户网站,
已经成功地用于基于序列和基于途径/网络的CPTAC研究
蛋白质组学数据集成。此外,我们将解决翻译后修饰中未满足的需求
(PTM)相关分析,通过使用蛋白质序列和基于自然语言的深度学习技术,
改进PTM肽鉴定,以预测基因组变体对PTM的影响,并将PTM位点连接到
现有的知识。使用我们团队的独特工具以及尖端的统计推断和机器学习
算法,我们将对来自CPTAC研究的蛋白质基因组数据进行综合分析,以:1)创建一个
为每个患者的肿瘤提供全面的分子和细胞画像; 2)识别和表征分子
和肿瘤微环境/免疫亚型; 3)使用
蛋白基因组学数据; 4)揭示癌症表型的分子机制; 5)开发预测模型
用于患者预后和治疗反应。我们的PGDAC为CPTAC网络带来了完全集成的,
在RFA指定的所有关键领域拥有专业知识的完整计划。我们有着良好
在计算蛋白质基因组学领域的领导地位以及在CPTAC网络中的成功合作记录,
我们希望通过这个项目广泛地推进这一领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bing Zhang其他文献
Bing Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bing Zhang', 18)}}的其他基金
Illuminating understudied druggable proteins using pan-cancer proteogenomics data
使用泛癌蛋白质组学数据阐明尚未研究的可药物蛋白
- 批准号:
10449905 - 财政年份:2022
- 资助金额:
$ 89.67万 - 项目类别:
iPGDAC, An Integrative Proteogenomic Data Analysis Center for CPTAC
iPGDAC,CPTAC 综合蛋白质组数据分析中心
- 批准号:
10632121 - 财政年份:2022
- 资助金额:
$ 89.67万 - 项目类别:
Illuminating understudied druggable proteins using pan-cancer proteogenomics data
使用泛癌蛋白质组学数据阐明尚未研究的可药物蛋白
- 批准号:
10671574 - 财政年份:2022
- 资助金额:
$ 89.67万 - 项目类别:
Proteogenomics-driven therapeutic discovery in hepatocellular carcinoma
蛋白质基因组学驱动的肝细胞癌治疗发现
- 批准号:
10594466 - 财政年份:2020
- 资助金额:
$ 89.67万 - 项目类别:
Proteogenomics-driven therapeutic discovery in hepatocellular carcinoma
蛋白质基因组学驱动的肝细胞癌治疗发现
- 批准号:
10380646 - 财政年份:2020
- 资助金额:
$ 89.67万 - 项目类别:
iPGDAC, An Integrative Proteogenomic Data Analysis Center for CPTAC
iPGDAC,CPTAC 综合蛋白质组数据分析中心
- 批准号:
9764289 - 财政年份:2016
- 资助金额:
$ 89.67万 - 项目类别:
iPGDAC, An Integrative Proteogenomic Data Analysis Center for CPTAC
iPGDAC,CPTAC 综合蛋白质组数据分析中心
- 批准号:
9210303 - 财政年份:2016
- 资助金额:
$ 89.67万 - 项目类别:
相似海外基金
Cerebral infarction treatment strategy using collagen-like "triple helix peptide" containing functional amino acid sequence
含功能氨基酸序列的类胶原“三螺旋肽”治疗脑梗塞策略
- 批准号:
23K06972 - 财政年份:2023
- 资助金额:
$ 89.67万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Establishment of a screening method for functional microproteins independent of amino acid sequence conservation
不依赖氨基酸序列保守性的功能性微生物蛋白筛选方法的建立
- 批准号:
23KJ0939 - 财政年份:2023
- 资助金额:
$ 89.67万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Effects of amino acid sequence and lipids on the structure and self-association of transmembrane helices
氨基酸序列和脂质对跨膜螺旋结构和自缔合的影响
- 批准号:
19K07013 - 财政年份:2019
- 资助金额:
$ 89.67万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Construction of electron-transfer amino acid sequence probe with an interaction for protein and cell
蛋白质与细胞相互作用的电子转移氨基酸序列探针的构建
- 批准号:
16K05820 - 财政年份:2016
- 资助金额:
$ 89.67万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of artificial antibody of anti-bitter taste receptor using random amino acid sequence library
利用随机氨基酸序列库开发抗苦味受体人工抗体
- 批准号:
16K08426 - 财政年份:2016
- 资助金额:
$ 89.67万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The aa15-17 amino acid sequence in the terminal protein domain of HBV polymerase as a viral factor affect-ing in vivo as well as in vitro replication activity of the virus.
HBV聚合酶末端蛋白结构域中的aa15-17氨基酸序列作为影响病毒体内和体外复制活性的病毒因子。
- 批准号:
25461010 - 财政年份:2013
- 资助金额:
$ 89.67万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Amino acid sequence analysis of fossil proteins using mass spectrometry
使用质谱法分析化石蛋白质的氨基酸序列
- 批准号:
23654177 - 财政年份:2011
- 资助金额:
$ 89.67万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Precise hybrid synthesis of glycoprotein through amino acid sequence-specific introduction of oligosaccharide followed by enzymatic transglycosylation reaction
通过氨基酸序列特异性引入寡糖,然后进行酶促糖基转移反应,精确杂合合成糖蛋白
- 批准号:
22550105 - 财政年份:2010
- 资助金额:
$ 89.67万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Estimating selection on amino-acid sequence polymorphisms in Drosophila
果蝇氨基酸序列多态性选择的估计
- 批准号:
NE/D00232X/1 - 财政年份:2006
- 资助金额:
$ 89.67万 - 项目类别:
Research Grant
Construction of a neural network for detecting novel domains from amino acid sequence information only
构建仅从氨基酸序列信息检测新结构域的神经网络
- 批准号:
16500189 - 财政年份:2004
- 资助金额:
$ 89.67万 - 项目类别:
Grant-in-Aid for Scientific Research (C)