iPGDAC, An Integrative Proteogenomic Data Analysis Center for CPTAC

iPGDAC,CPTAC 综合蛋白质组数据分析中心

基本信息

  • 批准号:
    9210303
  • 负责人:
  • 金额:
    $ 100.48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-20 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

Project Summary Proteogenomic characterization of human tumors seeks to explain how complex genomic alterations drive the hallmarks of cancer through mass spectrometry based proteomic analysis. The field has been accelerated by the Clinical Proteomic Tumor Analysis Consortium (CPTAC) who performed proteomic analyses for breast, colorectal and ovarian tumors and integrated the data with genomic information provided by the Cancer Genome Atlas (TCGA). Our Vanderbilt team conducted the colorectal cancer study and published the first paper on proteogenomic characterization of human cancer in the journal Nature. Data analysis approaches pioneered by us also were used in the CPTAC breast and ovarian cancer studies. Results from all three studies successfully demonstrated the value of integrative proteogenomic analyses in achieving a more complete understanding of cancer biology. Based on this proof of concept, the new CPTAC program seeks to expand the proteogenomic approach to more cancer types and to diverse types of samples including pre- and post-treatment clinical specimens, cultured cells, and patient-derived xenografts (PDXs). This application proposes an integrative proteogenomic data analysis center (iPGDAC) built on our established expertise and resources. The overarching goal of the iPGDAC is to analyze data generated by CPTAC and related resources to better understand cancer biology and to improve cancer treatment. To comprehensively exploit all CPTAC data, we propose three tiers of data analysis. Tier 1 analyses will integrate proteomic and genomic data generated from individual studies. These analyses will identify variant peptides and proteins as candidate biomarkers or therapeutic targets, will predict patient prognosis and response to therapy based on multi-omics data, and will reveal mechanisms of drug action and acquired drug resistance to drive rational drug combinations. Tier 2 analyses will integrate data between preclinical models and human tumors to enable effective translation of experimental findings to the clinic. Tier 3 analyses will integrate data across different cancer types to identify common and cancer type-specific protein signatures and networks. We will make our computational tools and analysis results publically available in two integrated proteogenomic data analysis systems, which will facilitate the collaborative identification of candidate biomarkers by all CPTAC investigators and will broaden the impact of the CPTAC program. The iPGDAC brings to the CPTAC network a fully integrated, completely established program with expertise in all the critical areas specified by the RFA. We have a proven track record of leadership in computational proteogenomics and successful collaboration in the CPTAC network, and we expect to broadly advance the field through this project.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bing Zhang其他文献

Bing Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bing Zhang', 18)}}的其他基金

Illuminating understudied druggable proteins using pan-cancer proteogenomics data
使用泛癌蛋白质组学数据阐明尚未研究的可药物蛋白
  • 批准号:
    10449905
  • 财政年份:
    2022
  • 资助金额:
    $ 100.48万
  • 项目类别:
iPGDAC, An Integrative Proteogenomic Data Analysis Center for CPTAC
iPGDAC,CPTAC 综合蛋白质组数据分析中心
  • 批准号:
    10440591
  • 财政年份:
    2022
  • 资助金额:
    $ 100.48万
  • 项目类别:
iPGDAC, An Integrative Proteogenomic Data Analysis Center for CPTAC
iPGDAC,CPTAC 综合蛋白质组数据分析中心
  • 批准号:
    10632121
  • 财政年份:
    2022
  • 资助金额:
    $ 100.48万
  • 项目类别:
Illuminating understudied druggable proteins using pan-cancer proteogenomics data
使用泛癌蛋白质组学数据阐明尚未研究的可药物蛋白
  • 批准号:
    10671574
  • 财政年份:
    2022
  • 资助金额:
    $ 100.48万
  • 项目类别:
Proteogenomics-driven therapeutic discovery in hepatocellular carcinoma
蛋白质基因组学驱动的肝细胞癌治疗发现
  • 批准号:
    10594466
  • 财政年份:
    2020
  • 资助金额:
    $ 100.48万
  • 项目类别:
Proteogenomics-driven therapeutic discovery in hepatocellular carcinoma
蛋白质基因组学驱动的肝细胞癌治疗发现
  • 批准号:
    10380646
  • 财政年份:
    2020
  • 资助金额:
    $ 100.48万
  • 项目类别:
iPGDAC, An Integrative Proteogenomic Data Analysis Center for CPTAC
iPGDAC,CPTAC 综合蛋白质组数据分析中心
  • 批准号:
    9764289
  • 财政年份:
    2016
  • 资助金额:
    $ 100.48万
  • 项目类别:
Vanderbilt Proteome Characterization Center
范德比尔特蛋白质组表征中心
  • 批准号:
    8904623
  • 财政年份:
    2011
  • 资助金额:
    $ 100.48万
  • 项目类别:
Vanderbilt Proteome Characterization Center
范德比尔特蛋白质组表征中心
  • 批准号:
    8771264
  • 财政年份:
    2011
  • 资助金额:
    $ 100.48万
  • 项目类别:
Bioinformatics/Biostatistics Core
生物信息学/生物统计学核心
  • 批准号:
    8535211
  • 财政年份:
  • 资助金额:
    $ 100.48万
  • 项目类别:

相似海外基金

Life outside institutions: histories of mental health aftercare 1900 - 1960
机构外的生活:1900 - 1960 年心理健康善后护理的历史
  • 批准号:
    DP240100640
  • 财政年份:
    2024
  • 资助金额:
    $ 100.48万
  • 项目类别:
    Discovery Projects
Development of a program to promote psychological independence support in the aftercare of children's homes
制定一项计划,促进儿童之家善后护理中的心理独立支持
  • 批准号:
    23K01889
  • 财政年份:
    2023
  • 资助金额:
    $ 100.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Integrating Smoking Cessation in Tattoo Aftercare
将戒烟融入纹身后护理中
  • 批准号:
    10452217
  • 财政年份:
    2022
  • 资助金额:
    $ 100.48万
  • 项目类别:
Integrating Smoking Cessation in Tattoo Aftercare
将戒烟融入纹身后护理中
  • 批准号:
    10670838
  • 财政年份:
    2022
  • 资助金额:
    $ 100.48万
  • 项目类别:
Aftercare for young people: A sociological study of resource opportunities
年轻人的善后护理:资源机会的社会学研究
  • 批准号:
    DP200100492
  • 财政年份:
    2020
  • 资助金额:
    $ 100.48万
  • 项目类别:
    Discovery Projects
Creating a National Aftercare Strategy for Survivors of Pediatric Cancer
为小儿癌症幸存者制定国家善后护理策略
  • 批准号:
    407264
  • 财政年份:
    2019
  • 资助金额:
    $ 100.48万
  • 项目类别:
    Operating Grants
Aftercare of green infrastructure: creating algorithm for resolving human-bird conflicts
绿色基础设施的善后工作:创建解决人鸟冲突的算法
  • 批准号:
    18K18240
  • 财政年份:
    2018
  • 资助金额:
    $ 100.48万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of an aftercare model for children who have experienced invasive procedures
为经历过侵入性手术的儿童开发善后护理模型
  • 批准号:
    17K12379
  • 财政年份:
    2017
  • 资助金额:
    $ 100.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of a Comprehensive Aftercare Program for children's self-reliance support facility
为儿童自力更生支持设施制定综合善后护理计划
  • 批准号:
    17K13937
  • 财政年份:
    2017
  • 资助金额:
    $ 100.48万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Project#2 Extending Treatment Effects Through an Adaptive Aftercare Intervention
项目
  • 批准号:
    8742767
  • 财政年份:
    2014
  • 资助金额:
    $ 100.48万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了