iPGDAC, An Integrative Proteogenomic Data Analysis Center for CPTAC
iPGDAC,CPTAC 综合蛋白质组数据分析中心
基本信息
- 批准号:9764289
- 负责人:
- 金额:$ 93.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-20 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAftercareAreaBiological AssayBiological MarkersBreastCancer BiologyClinicClinicalClinical TreatmentCollaborationsColorectal CancerColorectal NeoplasmsComplexComputer AnalysisComputing MethodologiesCultured CellsDNA Sequence AlterationDataData AnalysesDrug CombinationsDrug effect disorderDrug resistanceGalaxyGenomeGenomicsGoalsHumanImageryIndividualInformaticsInstitutesJournalsKnowledgeLeadershipMalignant NeoplasmsMalignant neoplasm of ovaryMammary NeoplasmsManuscriptsMass Spectrum AnalysisMedicineMultiomic DataNatureOvarianPaperPathway AnalysisPathway interactionsPatientsPeptidesPhasePre-Clinical ModelProteinsProteomicsPublishingReportingResearch PersonnelResourcesSamplingSpecific qualifier valueSpecimenSystemSystems AnalysisTechnologyThe Cancer Genome AtlasTranslationsUniversitiesVariantVisualization softwareWorkXenograft procedureacquired drug resistancebasebiomarker identificationcancer therapycancer typecandidate identificationcandidate markerclinically relevantcollegecomputerized toolsdata formatdata integrationgenomic datahands on instructionimprovedmalignant breast neoplasmnoveloncologyoutcome forecastovarian neoplasmpredictive modelingprogramsproteogenomicsresponsestatisticstargeted biomarkertherapeutic targettooltumoruser-friendlyvirtualweb interface
项目摘要
Project Summary
Proteogenomic characterization of human tumors seeks to explain how complex genomic alterations
drive the hallmarks of cancer through mass spectrometry based proteomic analysis. The field has been
accelerated by the Clinical Proteomic Tumor Analysis Consortium (CPTAC) who performed proteomic
analyses for breast, colorectal and ovarian tumors and integrated the data with genomic information provided
by the Cancer Genome Atlas (TCGA). Our Vanderbilt team conducted the colorectal cancer study and
published the first paper on proteogenomic characterization of human cancer in the journal Nature. Data
analysis approaches pioneered by us also were used in the CPTAC breast and ovarian cancer studies. Results
from all three studies successfully demonstrated the value of integrative proteogenomic analyses in achieving
a more complete understanding of cancer biology. Based on this proof of concept, the new CPTAC program
seeks to expand the proteogenomic approach to more cancer types and to diverse types of samples including
pre- and post-treatment clinical specimens, cultured cells, and patient-derived xenografts (PDXs). This
application proposes an integrative proteogenomic data analysis center (iPGDAC) built on our established
expertise and resources. The overarching goal of the iPGDAC is to analyze data generated by CPTAC and
related resources to better understand cancer biology and to improve cancer treatment. To comprehensively
exploit all CPTAC data, we propose three tiers of data analysis. Tier 1 analyses will integrate proteomic and
genomic data generated from individual studies. These analyses will identify variant peptides and proteins as
candidate biomarkers or therapeutic targets, will predict patient prognosis and response to therapy based on
multi-omics data, and will reveal mechanisms of drug action and acquired drug resistance to drive rational drug
combinations. Tier 2 analyses will integrate data between preclinical models and human tumors to enable
effective translation of experimental findings to the clinic. Tier 3 analyses will integrate data across different
cancer types to identify common and cancer type-specific protein signatures and networks. We will make our
computational tools and analysis results publically available in two integrated proteogenomic data analysis
systems, which will facilitate the collaborative identification of candidate biomarkers by all CPTAC investigators
and will broaden the impact of the CPTAC program. The iPGDAC brings to the CPTAC network a fully
integrated, completely established program with expertise in all the critical areas specified by the RFA. We
have a proven track record of leadership in computational proteogenomics and successful collaboration in the
CPTAC network, and we expect to broadly advance the field through this project.
项目摘要
人类肿瘤的蛋白质基因组特征试图解释复杂的基因组变化如何
通过基于质谱学的蛋白质组学分析来驱动癌症的特征。这块田地一直是
由进行蛋白质组学的临床蛋白质组肿瘤分析联盟(CPTAC)加速
对乳腺、结直肠和卵巢肿瘤进行分析,并将数据与提供的基因组信息相结合
由癌症基因组图谱(TCGA)提供。我们的Vanderbilt团队进行了结直肠癌研究,
在《自然》杂志上发表了第一篇关于人类癌症蛋白质基因组特征的论文。数据
我们开创的分析方法也被用于CPTAC的乳腺癌和卵巢癌研究。结果
从所有这三项研究中成功地证明了综合蛋白质基因组分析在实现
对癌症生物学有了更全面的了解。基于这一概念证明,新的CPTAC计划
寻求将蛋白质基因组学方法扩展到更多的癌症类型和不同类型的样本,包括
治疗前后的临床标本、培养细胞和患者来源的异种移植物(PDX)。这
应用程序建议在我们已建立的基础上建立一个综合蛋白质基因组数据分析中心(IPGDAC)
专业知识和资源。IPGDAC的首要目标是分析CPTAC产生的数据和
相关资源,以更好地了解癌症生物学和改进癌症治疗。要全面
利用CPTAC的所有数据,我们提出了三层数据分析。一级分析将整合蛋白质组学和
从个体研究中产生的基因组数据。这些分析将鉴定变异肽和蛋白质为
候选生物标志物或治疗靶点,将基于以下因素预测患者预后和治疗反应
多组学数据,并将揭示药物作用机制和获得性耐药,以推动合理用药
组合。第二级分析将整合临床前模型和人类肿瘤之间的数据,以实现
将实验结果有效地转化为临床。第3层分析将跨不同的
癌症类型识别常见的和癌症类型特定的蛋白质签名和网络。我们将使我们的
在两个综合蛋白质组数据分析中公开的计算工具和分析结果
系统,这将促进CPTAC所有调查人员协作识别候选生物标记物
并将扩大CPTAC计划的影响。IPGDAC为CPTAC网络带来了全面的
在RFA指定的所有关键领域拥有专业知识的完整、完整的计划。我们
在计算蛋白质组学领域具有公认的领导地位,并在
CPTAC网络,我们希望通过这个项目广泛推进这一领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bing Zhang其他文献
Bing Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bing Zhang', 18)}}的其他基金
Illuminating understudied druggable proteins using pan-cancer proteogenomics data
使用泛癌蛋白质组学数据阐明尚未研究的可药物蛋白
- 批准号:
10449905 - 财政年份:2022
- 资助金额:
$ 93.33万 - 项目类别:
iPGDAC, An Integrative Proteogenomic Data Analysis Center for CPTAC
iPGDAC,CPTAC 综合蛋白质组数据分析中心
- 批准号:
10440591 - 财政年份:2022
- 资助金额:
$ 93.33万 - 项目类别:
iPGDAC, An Integrative Proteogenomic Data Analysis Center for CPTAC
iPGDAC,CPTAC 综合蛋白质组数据分析中心
- 批准号:
10632121 - 财政年份:2022
- 资助金额:
$ 93.33万 - 项目类别:
Illuminating understudied druggable proteins using pan-cancer proteogenomics data
使用泛癌蛋白质组学数据阐明尚未研究的可药物蛋白
- 批准号:
10671574 - 财政年份:2022
- 资助金额:
$ 93.33万 - 项目类别:
Proteogenomics-driven therapeutic discovery in hepatocellular carcinoma
蛋白质基因组学驱动的肝细胞癌治疗发现
- 批准号:
10594466 - 财政年份:2020
- 资助金额:
$ 93.33万 - 项目类别:
Proteogenomics-driven therapeutic discovery in hepatocellular carcinoma
蛋白质基因组学驱动的肝细胞癌治疗发现
- 批准号:
10380646 - 财政年份:2020
- 资助金额:
$ 93.33万 - 项目类别:
iPGDAC, An Integrative Proteogenomic Data Analysis Center for CPTAC
iPGDAC,CPTAC 综合蛋白质组数据分析中心
- 批准号:
9210303 - 财政年份:2016
- 资助金额:
$ 93.33万 - 项目类别:
相似海外基金
Life outside institutions: histories of mental health aftercare 1900 - 1960
机构外的生活:1900 - 1960 年心理健康善后护理的历史
- 批准号:
DP240100640 - 财政年份:2024
- 资助金额:
$ 93.33万 - 项目类别:
Discovery Projects
Development of a program to promote psychological independence support in the aftercare of children's homes
制定一项计划,促进儿童之家善后护理中的心理独立支持
- 批准号:
23K01889 - 财政年份:2023
- 资助金额:
$ 93.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Integrating Smoking Cessation in Tattoo Aftercare
将戒烟融入纹身后护理中
- 批准号:
10452217 - 财政年份:2022
- 资助金额:
$ 93.33万 - 项目类别:
Integrating Smoking Cessation in Tattoo Aftercare
将戒烟融入纹身后护理中
- 批准号:
10670838 - 财政年份:2022
- 资助金额:
$ 93.33万 - 项目类别:
Aftercare for young people: A sociological study of resource opportunities
年轻人的善后护理:资源机会的社会学研究
- 批准号:
DP200100492 - 财政年份:2020
- 资助金额:
$ 93.33万 - 项目类别:
Discovery Projects
Creating a National Aftercare Strategy for Survivors of Pediatric Cancer
为小儿癌症幸存者制定国家善后护理策略
- 批准号:
407264 - 财政年份:2019
- 资助金额:
$ 93.33万 - 项目类别:
Operating Grants
Aftercare of green infrastructure: creating algorithm for resolving human-bird conflicts
绿色基础设施的善后工作:创建解决人鸟冲突的算法
- 批准号:
18K18240 - 财政年份:2018
- 资助金额:
$ 93.33万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of an aftercare model for children who have experienced invasive procedures
为经历过侵入性手术的儿童开发善后护理模型
- 批准号:
17K12379 - 财政年份:2017
- 资助金额:
$ 93.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a Comprehensive Aftercare Program for children's self-reliance support facility
为儿童自力更生支持设施制定综合善后护理计划
- 批准号:
17K13937 - 财政年份:2017
- 资助金额:
$ 93.33万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Project#2 Extending Treatment Effects Through an Adaptive Aftercare Intervention
项目
- 批准号:
8742767 - 财政年份:2014
- 资助金额:
$ 93.33万 - 项目类别: