Flexible Piezoelectric Array for Cardiovascular MonitoringDuring Cardiac Arrest
用于心脏骤停期间心血管监测的柔性压电阵列
基本信息
- 批准号:10440514
- 负责人:
- 金额:$ 19.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsArteriesBenchmarkingBiosensing TechniquesBlood PressureBlood Pressure MonitorsBlood flowCardiopulmonary ResuscitationCardiovascular PhysiologyCardiovascular systemCaringCarotid ArteriesClinicalComplexConsumptionCoupledCouplesDataDepositionDetectionDevelopmentDevice DesignsDevicesElectrocardiogramElectrodesElementsEquationFeedbackFilmFirst AidGoalsHarvestHeart ArrestHumanIndividualInkLiquid substanceMeasurementMeasuresMethodsModelingMonitorNanostructuresNoiseOutcomeOutputPatternPerformancePhotoplethysmographyPhysiologic pulsePolymersPrintingPropertyProtocols documentationPulse PressurePulse RatesResearchResearch PersonnelSignal TransductionSkinSphygmomanometersStructureSystemTechniquesTechnologyTestingThinnessTimeTrainingWorkbasebrachial arterydata-driven modeldetection methodfallsfemoral arteryfirst responderflexibilityhuman subjectimprovedmechanical propertiesnanofibernovelout-of-hospital cardiac arrestpolyvinylidene fluoridepressurepressure sensorpulse pressure waveradial arteryrandom forestsensorspatiotemporalstandard measurewearable device
项目摘要
Project Summary
In situations of out of hospital cardiac arrest, it is critical to quickly detect the performance of adequate
cardiopulmonary resuscitation (CPR) through clinically acceptable pulse rate and blood pressure (BP). However,
the detection of adequate CPR can be difficult for someone not trained in first aid. Currently the standard for
measuring BP noninvasively is using cuff-based oscillometeric approaches. Attempts at developing these into
wearable devices for automated and continuous measurements have proven difficult and so researchers have
looked at other methods. However, these methods have not met the criteria for flexibility, accuracy, and low
power consumption. This project aims to develop a flexible patch for accurate detection of pulse rate and blood
pressure superficially through the radial, brachial, carotid, and/or femoral arteries. Piezoelectric polymers, are
inherently flexible and have been used in many applications for pressure sensing, offering great potential for use
as a patch-like sensor for monitoring of cardiovascular function. However, in the standard form, the material is
not sensitive enough to accurately detect blood pressure. In our lab we have developed a core-shell nanofiber
structure of conductive and piezoelectric nanofibers, respectively. The core-shell nanostructure shows a 4.5
times improvement in pressure sensitivity when compared to standard piezoelectric nanofibers and a nearly 40
times improvement when compared to piezoelectric polymer thin films. This improvement in pressure sensitivity
should allow for a wearable device composed of these materials to exceed the necessary 35 dB signal to noise
ratio required for the accurate detection of pulse wave velocity, a cardiovascular parameter used to determine
blood pressure. Coupled with inkjet printing patterning techniques of conductive polymers developed in our lab,
we propose to fabricate a novel core-shell nanofiber piezoelectric array in a wearable patch form for
cardiovascular monitoring. In order to test this piezoelectric array and develop data-driven algorithms for the
detection of blood pressure, testing will occur on a controllable simulated cardiovascular system capable of
replicating a human’s diastolic and systolic blood pressures, pulse rates, and arterial mechanical properties. The
blood pressure attainable by the simulated system falls within the AAMI standard benchmark for accuracy and
precision for noninvasive blood pressure monitoring of 5 ± 8 mmHg. We will train various regression models
using the data generated from this system to relate the detected pulse wave velocities to blood pressure and we
will compare the outcomes to commonly used correlation equations. We propose that the fabrication methods
we will develop, when coupled together with data-driven algorithms, will allow for the development of a low-
power, flexible patch, capable of detecting pulse rate and blood pressure, giving feedback on the adequacy of
CPR.
项目摘要
在出院心脏骤停的情况下,至关重要的是要快速检测到足够的表现
通过临床上可接受的脉搏率和血压(BP),心肺复苏(CPR)。然而,
对于未接受急救训练的人来说,对足够的心肺复苏术的检测可能很困难。目前是
测量BP非侵入性使用基于袖口的振荡方法。尝试将其发展为
事实证明,用于自动化和连续测量的可穿戴设备已被证明很困难,因此研究人员有
查看其他方法。但是,这些方法尚未符合灵活性,准确性和较低的标准
功耗。该项目旨在开发一个柔性斑块,以准确检测脉搏率和血液
通过径向,臂,颈动脉和/或股动脉进行超级压力。压电聚合物为
天生的灵活性,已用于许多应用用于压力感应,提供了巨大的使用潜力
作为一种贴片的传感器,用于监测心血管功能。但是,以标准形式,材料是
敏感不足以准确检测血压。在我们的实验室中,我们开发了一个核心壳纳米纤维
导电和压电纳米纤维的结构。核心纳米结构显示4.5
与标准压电纳米纤维相比,压力敏感性的时间提高了,近40个
与压电聚合物薄膜相比,时间改善。压力敏感性的这种改善
应允许由这些材料组成的可穿戴设备超过必要的35 dB信号到噪声
准确检测脉冲波速度所需的比率,这是用于确定的心血管参数
血压。加上我们实验室中开发的导电聚合物的喷墨打印图案技术,
我们建议以可穿戴贴片的形式制造一种新颖的核心纳米纤维压电阵列
心血管监测。为了测试此压电阵列并为数据驱动算法开发
检测血压,测试将在能够受控的模拟心血管系统上进行
复制人的舒张压和收缩压,脉搏率和动脉机械性能。
模拟系统可达到的血压属于AAMI标准基准,以获得准确性和
5±8 mmHg的无创血压监测的精度。我们将培训各种回归模型
使用该系统生成的数据将检测到的脉搏波速度与血压相关联,我们
将将结果与常用的相关方程进行比较。我们建议制造方法
当与数据驱动算法结合在一起时,我们将开发
功率,柔性贴片,能够检测脉搏率和血压,给予有关足够的反馈
CPR。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Method for Inkjet-printing PEDOT:PSS polymer electrode arrays on piezoelectric PVDF-TrFE fibers.
- DOI:10.1109/jsen.2021.3071321
- 发表时间:2021-12
- 期刊:
- 影响因子:4.3
- 作者:Closson A;Richards H;Xu Z;Jin C;Dong L;Zhang JXJ
- 通讯作者:Zhang JXJ
Implantable Cardiac Kirigami-Inspired Lead-Based Energy Harvester Fabricated by Enhanced Piezoelectric Composite Film.
- DOI:10.1002/adhm.202002100
- 发表时间:2021-04
- 期刊:
- 影响因子:10
- 作者:Xu Z;Jin C;Cabe A;Escobedo D;Gruslova A;Jenney S;Closson AB;Dong L;Chen Z;Feldman MD;Zhang JXJ
- 通讯作者:Zhang JXJ
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaojing Zhang其他文献
Xiaojing Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaojing Zhang', 18)}}的其他基金
Flexible Piezoelectric Array for Cardiovascular MonitoringDuring Cardiac Arrest
用于心脏骤停期间心血管监测的柔性压电阵列
- 批准号:
10288237 - 财政年份:2021
- 资助金额:
$ 19.11万 - 项目类别:
相似国自然基金
VSMC机械感受器TRPM7调控H3S10p/NOTCH3促进冠状动脉侧支生成的作用与机制研究
- 批准号:82300366
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SARS-CoV-2 N蛋白激活SCAP-SREBP2/Notch1信号通路促进动脉粥样硬化进展及其机制研究
- 批准号:82360101
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
ANGPTL4促进血管平滑肌细胞衰老对急性Stanford A型主动脉夹层的作用及其机制
- 批准号:82371582
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于CTA血流动力学组学智能评估颅内小动脉瘤稳定性的研究
- 批准号:82302300
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
缝隙连接Cx43磷酸化修饰介导钙信号传递异常参与尼古丁致肺动脉重构的分子机制
- 批准号:82373622
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
A Wearable Ultrasonic System for Automatic, Continuous, and Noninvasive Monitoring of Central Blood Pressure
用于自动、连续、无创监测中心血压的可穿戴超声波系统
- 批准号:
10631219 - 财政年份:2022
- 资助金额:
$ 19.11万 - 项目类别:
A Wearable Ultrasonic System for Automatic, Continuous, and Noninvasive Monitoring of Central Blood Pressure
用于自动、连续、无创监测中心血压的可穿戴超声波系统
- 批准号:
10504949 - 财政年份:2022
- 资助金额:
$ 19.11万 - 项目类别:
Flexible Piezoelectric Array for Cardiovascular MonitoringDuring Cardiac Arrest
用于心脏骤停期间心血管监测的柔性压电阵列
- 批准号:
10288237 - 财政年份:2021
- 资助金额:
$ 19.11万 - 项目类别:
Wearable Multi-modality Cuffless Blood Pressure Monitoring
可穿戴多模态无袖血压监测
- 批准号:
10588138 - 财政年份:2021
- 资助金额:
$ 19.11万 - 项目类别:
Wearable Multi-modality Cuffless Blood Pressure Monitoring
可穿戴多模态无袖血压监测
- 批准号:
10390446 - 财政年份:2021
- 资助金额:
$ 19.11万 - 项目类别: