Targeted Neural Text Summarization of Electronic Medical Records to Improve Imaging Diagnostics
电子病历的定向神经文本摘要可改善影像诊断
基本信息
- 批准号:10443224
- 负责人:
- 金额:$ 35.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-02 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAreaAutomated AbstractingCaringClinicalCognitiveComplementComputerized Medical RecordConsultDataData ScienceDecision MakingDiagnosisDiagnosticDiagnostic ErrorsDiagnostic ImagingDifferential DiagnosisDistantElectronic Health RecordFeedbackGleanGoldHospitalsImageLeadMRI ScansMachine LearningMeasuresMedicalMedical HistoryMedical ImagingMethodsModelingModernizationNatural Language ProcessingOutputPatientsPerformanceProbabilityProviderPublishingRadiology SpecialtyRecording of previous eventsRecordsReportingResearchRetrievalRunningSourceSpecialistSupervisionSurfaceSystemTextTherapeuticThinkingTimeTrainingWomanWorkX-Ray Computed Tomographyaccurate diagnosisclinical centerclinical decision-makingclinical diagnosticsclinical practicedesignheuristicsimpressionimprovedinsightmachine learning modelmedical specialtiesmultimodalitynatural languagenovelpoint of careprototyperadiologistrecruitrelating to nervous systemunstructured data
项目摘要
Project Summary
Targeted Neural Text Summarization of Electronic Medical Records to Improve Imaging
Diagnosis
Electronic health records (EHRs) contain a wealth of patient information that might inform diagnostic
and therapeutic decision-making. However, much of this information is unstructured (i.e., free-text). This
makes it difficult to find the few relevant notes that might inform a given decision amongst lengthy
patient records, in turn rendering key information buried within EHR practically inaccessible to domain
experts operating under time constraints. Consequently, clinical decisions are often made without the
benefit of all available data. We propose to design, train, and deploy novel natural language processing
(NLP) models that provide extractive summaries of the free-text data within EHR conditioned on
particular queries; the intent is for such models to aid diagnosis and decision-making. We also propose to
use these models to try and counteract the cognitive biases that domain experts bring to clinical practice.
We focus specifically on the important and illustrative area of radiology, although the approach will
generalize to other specialties. Radiologists performing imaging diagnosis do not have adequate time to
carefully read through patient histories stored within EHR; they must instead make do with limited
background information when interpreting imaging. We will build on our preliminary on models that
summarize textual evidence extracted from EHR that might support particular hypothesized diagnoses.
We envision an interactive system in which this model is used by the radiologist to surface textual
evidence that supports different potential conditions that might be suggested by the imaging.
Radiologists (and other domain experts) rely on heuristics — type 1 thinking — when making decisions
under time constraints. This results in various cognitive biases influencing diagnoses, and these have
been shown to be the source of a significant fraction of diagnostic errors in radiology. We propose a novel
secondary use of the NLP models to be developed for this project as a means of counteracting these
cognitive biases. Specifically, once the radiologist has indicated an initial potential diagnosis via a natural
language query, we will automatically present a few alternative plausible diagnosis and summaries of the
extracted evidence supporting these (alongside the summary of evidence relevant to the initial query).
These alternative diagnoses will be gleaned from gamuts or published lists of differential diagnoses, and
we will re-rank them in order of their predicted probability for the current patient according a trained
machine learning model. We will evaluate the proposed models in practice at Brigham and Women's
Hospital, and assess the degree to which integrating automatically generated summaries actually affects
clinical decision-making at point of care.
项目摘要
提高影像质量的电子病历目标神经文本摘要
诊断学
电子健康记录(EHR)包含丰富的患者信息,可以为诊断提供信息
和治疗性决策。然而,这些信息中的大部分都是非结构化的(即,自由文本)。这
使得很难在冗长的文档中找到可能为给定决策提供信息的几个相关注释
患者记录,进而使隐藏在EHR中的关键信息实际上无法对域进行访问
专家在时间有限的情况下工作。因此,临床决策通常是在没有
所有可用数据的优势。我们建议设计、培训和部署新的自然语言处理
(NLP)模型,提供EHR内自由文本数据的摘要,条件是
特定的查询;其目的是让这样的模型帮助诊断和决策。我们还建议
使用这些模型来尝试和抵消领域专家给临床实践带来的认知偏差。
我们特别关注放射学的重要和说明性领域,尽管这种方法将
推广到其他专业。进行影像诊断的放射科医生没有足够的时间
仔细阅读存储在EHR中的患者病历;他们必须凑合使用有限的
解释成像时的背景信息。我们将在我们的初步模型的基础上
总结从电子病历中提取的可能支持特定假设诊断的文本证据。
我们设想了一个交互系统,在该系统中,放射科医生可以使用该模型来显示文本
支持成像可能提示的不同潜在情况的证据。
放射科医生(和其他领域的专家)在做决定时依赖于启发式的第一类思维
在时间限制下。这导致了影响诊断的各种认知偏差,这些偏差
已被证明是放射学中相当大一部分诊断错误的来源。我们提议写一部小说
二次使用将为本项目开发的NLP模型,作为抵消这些影响的手段
认知偏见。具体地说,一旦放射科医生通过自然的
语言查询,我们将自动呈现几个备选的似是而非的诊断和总结
提取了支持这些问题的证据(连同与最初询问相关的证据摘要)。
这些替代诊断将从游戏或已公布的鉴别诊断列表中收集,以及
我们将按照他们对当前患者的预测概率顺序对他们进行重新排序
机器学习模型。我们将评估建议的模式在布里格姆和妇女的实践中
医院,并评估集成自动生成的摘要实际影响的程度
护理点的临床决策。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BYRON CASEY WALLACE其他文献
BYRON CASEY WALLACE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BYRON CASEY WALLACE', 18)}}的其他基金
Targeted Neural Text Summarization of Electronic Medical Records to Improve Imaging Diagnostics
电子病历的定向神经文本摘要可改善影像诊断
- 批准号:
10696220 - 财政年份:2022
- 资助金额:
$ 35.88万 - 项目类别:
Hybrid Approaches to Optimizing Evidence Synthesis via Machine Learning and Crowdsourcing
通过机器学习和众包优化证据合成的混合方法
- 批准号:
9223968 - 财政年份:2016
- 资助金额:
$ 35.88万 - 项目类别:
相似国自然基金
层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
- 批准号:2021JJ40433
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
- 批准号:32001603
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
AREA国际经济模型的移植.改进和应用
- 批准号:18870435
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
Onboarding Rural Area Mathematics and Physical Science Scholars
农村地区数学和物理科学学者的入职
- 批准号:
2322614 - 财政年份:2024
- 资助金额:
$ 35.88万 - 项目类别:
Standard Grant
Point-scanning confocal with area detector
点扫描共焦与区域检测器
- 批准号:
534092360 - 财政年份:2024
- 资助金额:
$ 35.88万 - 项目类别:
Major Research Instrumentation
TRACK-UK: Synthesized Census and Small Area Statistics for Transport and Energy
TRACK-UK:交通和能源综合人口普查和小区域统计
- 批准号:
ES/Z50290X/1 - 财政年份:2024
- 资助金额:
$ 35.88万 - 项目类别:
Research Grant
Wide-area low-cost sustainable ocean temperature and velocity structure extraction using distributed fibre optic sensing within legacy seafloor cables
使用传统海底电缆中的分布式光纤传感进行广域低成本可持续海洋温度和速度结构提取
- 批准号:
NE/Y003365/1 - 财政年份:2024
- 资助金额:
$ 35.88万 - 项目类别:
Research Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 35.88万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326713 - 财政年份:2024
- 资助金额:
$ 35.88万 - 项目类别:
Standard Grant
Unlicensed Low-Power Wide Area Networks for Location-based Services
用于基于位置的服务的免许可低功耗广域网
- 批准号:
24K20765 - 财政年份:2024
- 资助金额:
$ 35.88万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427233 - 财政年份:2024
- 资助金额:
$ 35.88万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427232 - 财政年份:2024
- 资助金额:
$ 35.88万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427231 - 财政年份:2024
- 资助金额:
$ 35.88万 - 项目类别:
Standard Grant














{{item.name}}会员




