Hybrid Approaches to Optimizing Evidence Synthesis via Machine Learning and Crowdsourcing
通过机器学习和众包优化证据合成的混合方法
基本信息
- 批准号:9223968
- 负责人:
- 金额:$ 9.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-30 至 2018-09-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract
Systematic reviews constitute the highest quality of evidence and form the
cornerstone of evidence-based medicine (EBM). Such reviews now inform everything
from national health policy guidelines to bedside care. However, systematic reviews are
extremely laborious to produce; researchers can no longer keep pace with the massive
amount of evidence now being published.
Semi-automation of systematic review production via machine learning (ML) has
demonstrated the potential to substantially reduce reviewer workload while maintaining
comprehensiveness. However, it is unlikely that machines will fully supplant human
reviewers in the near future. Rather, human experts will probably remain in the loop,
assisted by automated methods. Methods that exploit the intersection of human workers
and ML models in the context of systematic reviews have not been explored at length.
Furthermore, we believe there is substantial untapped potential in harnessing distributed
crowd-workers to contribute to systematic reviews, and thus economize expert reviewer
efforts. This novel avenue has largely been neglected as a means of increasing the
efficiency of review production.
We propose addressing this gap by developing and evaluating novel, hybrid
approaches to generating systematic reviews that jointly incorporate domain experts
(systematic reviewers), layperson workers recruited via crowdworking platforms such as
Amazon's Mechanical Turk and volunteer citizen scientists, while simultaneously
capitalizing on ML models.
This innovative, hybrid approach will be the first in-depth exploration of intelligent
ML/human systems that aim to reduce the workload in the production of biomedical
systematic reviews. Our strong preliminary work demonstrates the promise of this
general strategy.
摘要
系统评价构成了最高质量的证据,
循证医学(Evidence-Based Medicine,EBM)如今,这样的审查可以告知一切
从国家卫生政策指南到床边护理。然而,系统评价
生产极其费力;研究人员再也无法跟上大规模的
目前正在公布的证据。
通过机器学习(ML)实现系统综述生产的半自动化,
证明了大幅减少评审员工作量的潜力,同时保持
全面发展然而,机器不太可能完全取代人类。
评论家在不久的将来相反,人类专家可能会留在循环中,
通过自动化的方法。利用人类工作者交集的方法
系统评价背景下的ML模型尚未详细探讨。
此外,我们认为,在利用分布式
众工为系统评价做出贡献,从而节省专家评审员
努力这种新颖的途径在很大程度上被忽视,作为增加
审查生产效率。
我们建议通过开发和评估新的,混合的,
联合领域专家进行系统评价的方法
(系统审查员),通过众包平台招募的外行工人,
亚马逊的土耳其机器人和志愿公民科学家,同时
利用ML模型。
这种创新的混合方法将是智能化的首次深入探索,
ML/人类系统,旨在减少生物医学生产中的工作量
系统评价我们强有力的初步工作证明了这一点的承诺
总体战略。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An exploration of crowdsourcing citation screening for systematic reviews.
- DOI:10.1002/jrsm.1252
- 发表时间:2017-09
- 期刊:
- 影响因子:9.8
- 作者:Mortensen ML;Adam GP;Trikalinos TA;Kraska T;Wallace BC
- 通讯作者:Wallace BC
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BYRON CASEY WALLACE其他文献
BYRON CASEY WALLACE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BYRON CASEY WALLACE', 18)}}的其他基金
Targeted Neural Text Summarization of Electronic Medical Records to Improve Imaging Diagnostics
电子病历的定向神经文本摘要可改善影像诊断
- 批准号:
10696220 - 财政年份:2022
- 资助金额:
$ 9.86万 - 项目类别:
Targeted Neural Text Summarization of Electronic Medical Records to Improve Imaging Diagnostics
电子病历的定向神经文本摘要可改善影像诊断
- 批准号:
10443224 - 财政年份:2022
- 资助金额:
$ 9.86万 - 项目类别:
相似国自然基金
Lagrangian origin of geometric approaches to scattering amplitudes
- 批准号:24ZR1450600
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Optimizing care for older adults in the new treatment era for type 2 diabetes and heart failure: Strengthening causal inference through novel approaches and evidence triangulation
在 2 型糖尿病和心力衰竭的新治疗时代优化老年人护理:通过新方法和证据三角测量加强因果推理
- 批准号:
10449576 - 财政年份:2022
- 资助金额:
$ 9.86万 - 项目类别:
Optimizing care for older adults in the new treatment era for type 2 diabetes and heart failure: Strengthening causal inference through novel approaches and evidence triangulation
在 2 型糖尿病和心力衰竭的新治疗时代优化老年人护理:通过新方法和证据三角测量加强因果推理
- 批准号:
10673040 - 财政年份:2022
- 资助金额:
$ 9.86万 - 项目类别:
Optimizing Colorectal Cancer Screening among Patients with Diabetes in Safety-Net Primary Care Settings: Targeting Implementation Approaches
在安全网初级保健环境中优化糖尿病患者的结直肠癌筛查:有针对性的实施方法
- 批准号:
10320056 - 财政年份:2021
- 资助金额:
$ 9.86万 - 项目类别:
Optimizing Colorectal Cancer Screening among Patients with Diabetes in Safety-Net Primary Care Settings: Targeting Implementation Approaches
在安全网初级保健环境中优化糖尿病患者的结直肠癌筛查:有针对性的实施方法
- 批准号:
10554640 - 财政年份:2021
- 资助金额:
$ 9.86万 - 项目类别:
In-the-kNOW (Novel approaches to Optimizing Women’s Health): A mobile application to optimize HIV prevention and sexual/reproductive health communication among Black women in the Southern U.S.
In-the-kNOW(优化女性健康的新方法):一款优化美国南部黑人女性艾滋病毒预防和性/生殖健康沟通的移动应用程序。
- 批准号:
10328020 - 财政年份:2021
- 资助金额:
$ 9.86万 - 项目类别:
Optimizing Colorectal Cancer Screening among Patients with Diabetes in Safety-Net Primary Care Settings: Targeting Implementation Approaches
在安全网初级保健环境中优化糖尿病患者的结直肠癌筛查:有针对性的实施方法
- 批准号:
10620315 - 财政年份:2021
- 资助金额:
$ 9.86万 - 项目类别:
Optimizing technical approaches of endoscopic confocal fluorescence microscopic (ECFM) combined with smart probing for small animal studies of the lung
优化内窥镜共焦荧光显微镜(ECFM)结合智能探测的技术方法,用于小动物肺部研究
- 批准号:
RGPIN-2016-06279 - 财政年份:2021
- 资助金额:
$ 9.86万 - 项目类别:
Discovery Grants Program - Individual
In-the-kNOW (Novel approaches to Optimizing Women’s Health): A mobile application to optimize HIV prevention and sexual/reproductive health communication among Black women in the Southern U.S.
In-the-kNOW(优化女性健康的新方法):一款优化美国南部黑人女性艾滋病毒预防和性/生殖健康沟通的移动应用程序。
- 批准号:
10459630 - 财政年份:2021
- 资助金额:
$ 9.86万 - 项目类别:
In-the-kNOW (Novel approaches to Optimizing Women’s Health): A mobile application to optimize HIV prevention and sexual/reproductive health communication among Black women in the Southern U.S.
In-the-kNOW(优化女性健康的新方法):一款优化美国南部黑人女性艾滋病毒预防和性/生殖健康沟通的移动应用程序。
- 批准号:
10632081 - 财政年份:2021
- 资助金额:
$ 9.86万 - 项目类别:
Statistical approaches for optimizing the design and analysis of clinical trials
优化临床试验设计和分析的统计方法
- 批准号:
20K18900 - 财政年份:2020
- 资助金额:
$ 9.86万 - 项目类别:
Grant-in-Aid for Early-Career Scientists