Small Area Estimation for State and Local Health Departments
州和地方卫生部门的小面积估计
基本信息
- 批准号:10443373
- 负责人:
- 金额:$ 23.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAgeAge FactorsAmerican Heart AssociationAreaBayesian AnalysisBayesian MethodCase StudyCause of DeathCensusesCenters for Disease Control and Prevention (U.S.)Cessation of lifeCitiesCollaborationsCollectionComplexComputer softwareCountryDataData SetDeath RateDependenceDevelopmentDisease SurveillanceEquilibriumEthnic OriginEventFaceFrightFundingFutureGenderGeographic LocationsGeographyGoalsHealthHealth SurveysHeart DiseasesHouseholdIndividualInterventionInvestigationJointsLiteratureMethodologyMethodsModelingMultivariate AnalysisNeighborhoodsObesityOutcomePatternPeer ReviewPennsylvaniaPhiladelphiaPoliciesPopulationPrevalenceProductionPublic HealthPublicationsRaceReportingResearchResearch PersonnelResearch Project GrantsResolutionRisk FactorsSample SizeSmall-Area AnalysisSoftware ToolsSpecific qualifier valueStandardizationStatistical MethodsStatistical ModelsSubgroupSurveysTrainingTraining ProgramsWeights and MeasuresWorkbasedashboarddata spacedisease disparityexperiencegeographic disparityhealth datahealth disparityimprovedinformation modelinsightlarge datasetsmenmortalitypreventracial disparitysexspatiotemporalstatisticstooltrend
项目摘要
PROJECT SUMMARY
Researchers at state and local health departments producing small area estimates often face a lose-lose situation.
On one hand, there is a wealth of evidence of racial disparities in many health outcomes and their risk factors,
but stratifying data by space and race (in addition to factors such as age and sex) only exacerbates the issues
associated with small area estimation by dividing a dataset with small sample sizes into a larger dataset with
smaller sample sizes. On the other hand, while the use of complex statistical models can be used to produce
more precise estimates from limited data, estimates produced by state and local health departments may be
treated as “official statistics” and thus these agencies may be reluctant to rely too heavily on statistical models for
fear of the bias they may introduce.
The objective of the proposed work is three-fold. Our first task will be to develop statistical models for the
analysis of multivariate spatial data that allow users to pre-specify an upper bound on the model's informativeness
— i.e., a measure of the weight given to the model as compared to the data when producing model-based
estimates. This work will build on the rich spatial statistics literature and recent research that provides insight into
how to quantify the informativeness of spatial models. We will extend this approach to the setting of multivariate
spatial data for the purposes of calculating demographic group-specific estimates and age-adjusted estimates.
Because we envision these methods being useful for researchers at state and local health departments, we
believe a thorough case study of our methods should be conducted to assess their suitability. To this end, our
second task will be to partner with the Philadelphia Department of Public Health and use the methods we've
developed to conduct a rigorous analysis of heart disease mortality and its risk factors in Philadelphia. This
analysis will produce yearly census tract-level estimates for rates of death due to several forms of heart disease
and estimates of the prevalence of key risk factors by age, gender, and race/ethnicity. The product of this research
will include a collection of reports — one focused on city-level trends and one focused on neighborhood-level
trends — an interactive online dashboard, and peer-reviewed publications that add context to our findings.
Finally, we recognize that few state and local health departments have staff who are trained in advanced
spatial Bayesian statistical methods, a fact that could serve as an impediment to the use of the methods we
develop. To remedy this, our third task will be to partner with the CDC-funded GIS Capacity Building Project, which
provides training in geospatial analyses to state and local health departments. This month-long training program
begins by introducing users to the ArcGIS software package and concludes with an overview of a tool created by
the GIS Capacity Building Project — the Rate Stabilizing Tool (RST). For this project, we will partner with the GIS
Capacity Building Project to incorporate the methods we develop into the RST in a “black-box” framework and
provide additional training on the use of spatial Bayesian methods in disease surveillance.
项目摘要
州和地方卫生部门的研究人员在进行小面积估计时往往面临双输的局面。
一方面,有大量证据表明,在许多健康结果及其风险因素方面存在种族差异,
但按空间和种族(以及年龄和性别等因素)对数据进行分层只会加剧问题
通过将具有小样本大小的数据集划分为较大的数据集,
样本量较小。另一方面,虽然可以使用复杂的统计模型来产生
从有限的数据中得出更精确的估计,州和地方卫生部门的估计可能是
被视为“官方统计”,因此这些机构可能不愿意过于依赖统计模型,
害怕他们可能带来的偏见。
拟议工作的目标有三个方面。我们的第一个任务将是开发统计模型,
多变量空间数据的分析,允许用户预先指定模型信息量的上限
- 也就是说,当生成基于模型的数据时,与数据相比,给予模型的权重的度量
估算这项工作将建立在丰富的空间统计文献和最近的研究,提供了深入了解
如何量化空间模型的信息量。我们将把这种方法扩展到多变量的设置,
空间数据,用于计算特定人口群体估计值和年龄调整估计值。
因为我们设想这些方法对州和地方卫生部门的研究人员有用,
我相信应该对我们的方法进行彻底的案例研究,以评估它们的适用性。为此,我们
第二项任务是与费城公共卫生部合作,
该研究旨在对费城的心脏病死亡率及其危险因素进行严格的分析。这
分析将产生每年一次的人口普查区域水平的估计,由于几种形式的心脏病死亡率
以及按年龄、性别和种族/民族分类的关键风险因素的患病率估计值。这项研究的成果
将包括一系列报告-一个侧重于城市一级的趋势,一个侧重于社区一级的趋势
趋势-交互式在线仪表板和同行评审的出版物,为我们的发现添加背景信息。
最后,我们认识到,很少有州和地方卫生部门的工作人员谁是先进的培训,
空间贝叶斯统计方法,这一事实可能会成为我们使用的方法的障碍,
开发.为了解决这个问题,我们的第三个任务是与CDC资助的GIS能力建设项目合作,
为州和地方卫生部门提供地理空间分析培训。为期一个月的培训计划
首先向用户介绍ArcGIS软件包,最后概述了由
地理信息系统能力建设项目-速率稳定工具。在这个项目中,我们将与GIS合作,
能力建设项目,将我们开发的方法纳入“黑箱”框架中,
提供关于在疾病监测中使用空间贝叶斯方法的额外培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Harrison Quick其他文献
Harrison Quick的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Harrison Quick', 18)}}的其他基金
Small Area Estimation for State and Local Health Departments
州和地方卫生部门的小面积估计
- 批准号:
10668454 - 财政年份:2022
- 资助金额:
$ 23.64万 - 项目类别:
Small Area Estimation for State and Local Health Departments
州和地方卫生部门的小面积估计
- 批准号:
10275680 - 财政年份:2021
- 资助金额:
$ 23.64万 - 项目类别:
相似国自然基金
靶向递送一氧化碳调控AGE-RAGE级联反应促进糖尿病创面愈合研究
- 批准号:JCZRQN202500010
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
对香豆酸抑制AGE-RAGE-Ang-1通路改善海马血管生成障碍发挥抗阿尔兹海默病作用
- 批准号:2025JJ70209
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AGE-RAGE通路调控慢性胰腺炎纤维化进程的作用及分子机制
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:面上项目
甜茶抑制AGE-RAGE通路增强突触可塑性改善小鼠抑郁样行为
- 批准号:2023JJ50274
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
蒙药额尔敦-乌日勒基础方调控AGE-RAGE信号通路改善术后认知功能障碍研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
补肾健脾祛瘀方调控AGE/RAGE信号通路在再生障碍性贫血骨髓间充质干细胞功能受损的作用与机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
LncRNA GAS5在2型糖尿病动脉粥样硬化中对AGE-RAGE 信号通路上相关基因的调控作用及机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
围绕GLP1-Arginine-AGE/RAGE轴构建探针组学方法探索大柴胡汤异病同治的效应机制
- 批准号:81973577
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
AGE/RAGE通路microRNA编码基因多态性与2型糖尿病并发冠心病的关联研究
- 批准号:81602908
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
高血糖激活滑膜AGE-RAGE-PKC轴致骨关节炎易感的机制研究
- 批准号:81501928
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
PROTEMO: Emotional Dynamics Of Protective Policies In An Age Of Insecurity
PROTEMO:不安全时代保护政策的情绪动态
- 批准号:
10108433 - 财政年份:2024
- 资助金额:
$ 23.64万 - 项目类别:
EU-Funded
The role of dietary and blood proteins in the prevention and development of major age-related diseases
膳食和血液蛋白在预防和发展主要与年龄相关的疾病中的作用
- 批准号:
MR/X032809/1 - 财政年份:2024
- 资助金额:
$ 23.64万 - 项目类别:
Fellowship
Atomic Anxiety in the New Nuclear Age: How Can Arms Control and Disarmament Reduce the Risk of Nuclear War?
新核时代的原子焦虑:军控与裁军如何降低核战争风险?
- 批准号:
MR/X034690/1 - 财政年份:2024
- 资助金额:
$ 23.64万 - 项目类别:
Fellowship
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341426 - 财政年份:2024
- 资助金额:
$ 23.64万 - 项目类别:
Continuing Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341424 - 财政年份:2024
- 资助金额:
$ 23.64万 - 项目类别:
Continuing Grant
Doctoral Dissertation Research: Effects of age of acquisition in emerging sign languages
博士论文研究:新兴手语习得年龄的影响
- 批准号:
2335955 - 财政年份:2024
- 资助金额:
$ 23.64万 - 项目类别:
Standard Grant
The economics of (mis)information in the age of social media
社交媒体时代(错误)信息的经济学
- 批准号:
DP240103257 - 财政年份:2024
- 资助金额:
$ 23.64万 - 项目类别:
Discovery Projects
How age & sex impact the transcriptional control of mammalian muscle growth
你多大
- 批准号:
DP240100408 - 财政年份:2024
- 资助金额:
$ 23.64万 - 项目类别:
Discovery Projects
Supporting teachers and teaching in the age of Artificial Intelligence
支持人工智能时代的教师和教学
- 批准号:
DP240100111 - 财政年份:2024
- 资助金额:
$ 23.64万 - 项目类别:
Discovery Projects
Enhancing Wahkohtowin (Kinship beyond the immediate family) Community-based models of care to reach and support Indigenous and racialized women of reproductive age and pregnant women in Canada for the prevention of congenital syphilis
加强 Wahkohtowin(直系亲属以外的亲属关系)以社区为基础的护理模式,以接触和支持加拿大的土著和种族育龄妇女以及孕妇,预防先天梅毒
- 批准号:
502786 - 财政年份:2024
- 资助金额:
$ 23.64万 - 项目类别:
Directed Grant