Scalable and Sensor-Agnostic Software for Distributed Processing and Visualization of Multi-Site MEG/EEG Datasets

可扩展且与传感器无关的软件,用于多站点 MEG/EEG 数据集的分布式处理和可视化

基本信息

  • 批准号:
    10442915
  • 负责人:
  • 金额:
    $ 67.13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2023-02-28
  • 项目状态:
    已结题

项目摘要

Project Summary During the past three decades non-invasive functional brain imaging has developed immensely in terms of measurement technologies, analysis methods, and innovative paradigms to capture information about brain function both in healthy and diseased individuals. While functional MRI (fMRI) provides a wealth of information by measuring the indirect slow hemodynamic signals. Magnetoencephalography (MEG) and electroencephalography (EEG) remain the only noninvasive techniques capable of directly measuring the electrophysiological activity directly with a millisecond resolution. During the past twelve years we have developed, with NIH support, the MNE-Python software, which covers multiple methods of data preprocessing, source localization, statistical analysis, and estimation of functional connectivity between distributed brain regions. All algorithms and utility functions are implemented in a consistent manner with well-documented interfaces, enabling users to create M/EEG data analysis pipelines by writing Python scripts. To further extend our software to meet the needs of a growing user base and reflect recent developments in MEG/EEG as well as in invasive electrophysiological recordings. Optically Pumped Magnetometers (OPMs) are sensitive room- temperature magnetic field sensors that have begun to provide movable, flexible, lightweight, on-scalp MEG systems, and may soon provide higher signal-to-noise ratio and more complete spatial frequency sampling than SQUID-based systems. However, analysis tools optimal processing of OPM-MEG data are largely missing. Therefore, in Aim 1, we will introduce tools for High-Resolution On-Scalp OPM-MEG Data Analysis. Electrocorticography (ECoG) and subcortical EEG (sEEG) provide focal spatial measurements of the electrophysiological activity. In Aim 2, we will develop sEEG and ECoG workflows, which includes electrode localization and intracranial inverse and forward modeling. Recent methodological advances by our group and the availability of on-scalp OPM-MEG systems (Aim 1) and ECoG/sEEG (Aim 2) have expanded the possibilities for improved localization of deep (cortical and subcortical) sources in basic and clinical research applications. In Aim 3, we will introduce these methods to the repertoire of MNE-Python and will use phantom recordings, human data with known ground truth, and existing MEG databases to validate the new methods. Finally, in Aim 4, we will continue to develop MNE-Python using best programming practices ensuring multiplatform compatibility, extensive web-based documentation, training and forums, and hands-on training workshops.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MATTI HAMALAINEN其他文献

MATTI HAMALAINEN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MATTI HAMALAINEN', 18)}}的其他基金

Integrating Electromagnetic Multifocal Brain Stimulation and Recording Technologies
集成电磁多焦脑刺激和记录技术
  • 批准号:
    10038182
  • 财政年份:
    2020
  • 资助金额:
    $ 67.13万
  • 项目类别:
Integrating Electromagnetic Multifocal Brain Stimulation and Recording Technologies
集成电磁多焦脑刺激和记录技术
  • 批准号:
    10224853
  • 财政年份:
    2020
  • 资助金额:
    $ 67.13万
  • 项目类别:
Scalable Software for Distributed Processing and Visualization of Multi-Site MEG/EEG Datasets
用于多站点 MEG/EEG 数据集分布式处理和可视化的可扩展软件
  • 批准号:
    10175064
  • 财政年份:
    2018
  • 资助金额:
    $ 67.13万
  • 项目类别:
Scalable Software for Distributed Processing and Visualization of Multi-Site MEG/EEG Datasets
用于多站点 MEG/EEG 数据集分布式处理和可视化的可扩展软件
  • 批准号:
    9750274
  • 财政年份:
    2018
  • 资助金额:
    $ 67.13万
  • 项目类别:
Human Neocortical Neurosolver
人类新皮质神经解算器
  • 批准号:
    9360102
  • 财政年份:
    2016
  • 资助金额:
    $ 67.13万
  • 项目类别:
Human Neocortical Neurosolver
人类新皮质神经解算器
  • 批准号:
    9170003
  • 财政年份:
    2016
  • 资助金额:
    $ 67.13万
  • 项目类别:
Human Neocortical Neurosolver
人类新皮质神经解算器
  • 批准号:
    9535315
  • 财政年份:
    2016
  • 资助金额:
    $ 67.13万
  • 项目类别:
Sonoelectric tomography (SET): High-resolution noninvasive neuronal current tomography
声电断层扫描 (SET):高分辨率无创神经元电流断层扫描
  • 批准号:
    9148266
  • 财政年份:
    2015
  • 资助金额:
    $ 67.13万
  • 项目类别:
Sonoelectric tomography (SET): High-resolution noninvasive neuronal current tomography
声电断层扫描 (SET):高分辨率无创神经元电流断层扫描
  • 批准号:
    9037285
  • 财政年份:
    2015
  • 资助金额:
    $ 67.13万
  • 项目类别:
CRCNS: Advancing Computational Methods to Reveal Human Thalamocortical Dynamics
CRCNS:推进计算方法来揭示人类丘脑皮质动力学
  • 批准号:
    8837196
  • 财政年份:
    2014
  • 资助金额:
    $ 67.13万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了