Scalable and Sensor-Agnostic Software for Distributed Processing and Visualization of Multi-Site MEG/EEG Datasets
可扩展且与传感器无关的软件,用于多站点 MEG/EEG 数据集的分布式处理和可视化
基本信息
- 批准号:10442915
- 负责人:
- 金额:$ 67.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2023-02-28
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsAlzheimer&aposs DiseaseAptitudeBasic ScienceBrainBrain imagingBrain regionClinicalClinical ResearchCodeCognitive deficitsCommunitiesComputer softwareDataData AnalysesData SetDatabasesDevelopmentDiagnosisDiseaseDocumentationEducational workshopElectrocorticogramElectrodesElectroencephalographyElectromagneticsElectrophysiology (science)EnsureEpilepsyFrequenciesFunctional Magnetic Resonance ImagingGrantHumanIndividualInstitutionKnowledgeLaboratoriesLanguage DevelopmentMachine LearningMagnetoencephalographyManufacturer NameMapsMeasurementMeasuresMental disordersMethodologyMethodsModelingModernizationNeurologicNeurosciences ResearchNoiseObsessive-Compulsive DisorderOnline SystemsOpticsPopulationPositioning AttributeProcessPumpPythonsReadingReproducibilityResearchResearch PersonnelResolutionSamplingScalp structureSchizophreniaScienceSignal TransductionSiteSourceStatistical Data InterpretationStreamStructureSurfaceSystemTechniquesTechnologyTemperatureTestingTrainingUnited States National Institutes of HealthVisualizationWorkWritingautism spectrum disorderbasecomputerized data processingdata analysis pipelinedata formatdata standardsdesignflexibilityhemodynamicshuman dataimprovedinnovationlight weightmagnetic fieldmillisecondnovelpedagogyreconstructionsensorsoftware developmentsource localizationtool
项目摘要
Project Summary
During the past three decades non-invasive functional brain imaging has developed immensely in terms of
measurement technologies, analysis methods, and innovative paradigms to capture information about brain
function both in healthy and diseased individuals. While functional MRI (fMRI) provides a wealth of information
by measuring the indirect slow hemodynamic signals. Magnetoencephalography (MEG) and
electroencephalography (EEG) remain the only noninvasive techniques capable of directly measuring the
electrophysiological activity directly with a millisecond resolution. During the past twelve years we have
developed, with NIH support, the MNE-Python software, which covers multiple methods of data preprocessing,
source localization, statistical analysis, and estimation of functional connectivity between distributed brain
regions. All algorithms and utility functions are implemented in a consistent manner with well-documented
interfaces, enabling users to create M/EEG data analysis pipelines by writing Python scripts. To further extend
our software to meet the needs of a growing user base and reflect recent developments in MEG/EEG as well
as in invasive electrophysiological recordings. Optically Pumped Magnetometers (OPMs) are sensitive room-
temperature magnetic field sensors that have begun to provide movable, flexible, lightweight, on-scalp MEG
systems, and may soon provide higher signal-to-noise ratio and more complete spatial frequency sampling
than SQUID-based systems. However, analysis tools optimal processing of OPM-MEG data are largely
missing. Therefore, in Aim 1, we will introduce tools for High-Resolution On-Scalp OPM-MEG Data Analysis.
Electrocorticography (ECoG) and subcortical EEG (sEEG) provide focal spatial measurements of the
electrophysiological activity. In Aim 2, we will develop sEEG and ECoG workflows, which includes electrode
localization and intracranial inverse and forward modeling. Recent methodological advances by our group and
the availability of on-scalp OPM-MEG systems (Aim 1) and ECoG/sEEG (Aim 2) have expanded the
possibilities for improved localization of deep (cortical and subcortical) sources in basic and clinical research
applications. In Aim 3, we will introduce these methods to the repertoire of MNE-Python and will use phantom
recordings, human data with known ground truth, and existing MEG databases to validate the new methods.
Finally, in Aim 4, we will continue to develop MNE-Python using best programming practices ensuring
multiplatform compatibility, extensive web-based documentation, training and forums, and hands-on training
workshops.
项目摘要
在过去的三十年中,非侵入性脑功能成像在以下方面得到了极大的发展:
测量技术、分析方法和创新范式,以获取有关大脑的信息
在健康和患病的个体中都起作用。虽然功能性磁共振成像(fMRI)提供了丰富的信息,
通过测量间接的缓慢血流动力学信号。脑磁图(MEG)和
脑电图(EEG)仍然是唯一能够直接测量脑电活动的非侵入性技术。
电生理活动直接与毫秒分辨率。在过去的12年里,
在NIH的支持下开发了MNE-Python软件,该软件涵盖了多种数据预处理方法,
分布式大脑之间功能连接的源定位、统计分析和估计
地区所有算法和实用程序功能都以一致的方式实现,
接口,使用户能够通过编写Python脚本创建M/EEG数据分析管道。进一步延长
我们的软件,以满足不断增长的用户群的需求,并反映在MEG/EEG的最新发展,以及
如侵入性电生理记录。光泵磁力计(OPMs)是一种灵敏的室温磁力计。
温度磁场传感器已经开始提供可移动的,灵活的,轻便的,头皮上的MEG
系统,并可能很快提供更高的信噪比和更完整的空间频率采样
基于SQUID的系统。然而,OPM-MEG数据的分析工具优化处理在很大程度上是
失踪了因此,在目标1中,我们将介绍高分辨率头皮OPM-MEG数据分析工具。
皮质电图(ECoG)和皮质下EEG(sEEG)提供了脑电活动的局部空间测量。
电生理活动在目标2中,我们将开发sEEG和ECoG工作流程,其中包括电极
定位和颅内逆向和正向建模。我们小组最近在方法上取得的进展,
头皮OPM-MEG系统(目标1)和ECoG/sEEG(目标2)的可用性扩大了
在基础和临床研究中改进深层(皮层和皮层下)源定位的可能性
应用.在目标3中,我们将把这些方法引入MNE-Python的指令表,并将使用phantom
记录,具有已知地面真相的人类数据,以及现有的MEG数据库,以验证新方法。
最后,在目标4中,我们将继续使用最佳编程实践来开发MNE-Python,以确保
多平台兼容性、广泛的基于Web的文档、培训和论坛以及实践培训
工作坊.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MATTI HAMALAINEN其他文献
MATTI HAMALAINEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MATTI HAMALAINEN', 18)}}的其他基金
Integrating Electromagnetic Multifocal Brain Stimulation and Recording Technologies
集成电磁多焦脑刺激和记录技术
- 批准号:
10038182 - 财政年份:2020
- 资助金额:
$ 67.13万 - 项目类别:
Integrating Electromagnetic Multifocal Brain Stimulation and Recording Technologies
集成电磁多焦脑刺激和记录技术
- 批准号:
10224853 - 财政年份:2020
- 资助金额:
$ 67.13万 - 项目类别:
Scalable Software for Distributed Processing and Visualization of Multi-Site MEG/EEG Datasets
用于多站点 MEG/EEG 数据集分布式处理和可视化的可扩展软件
- 批准号:
10175064 - 财政年份:2018
- 资助金额:
$ 67.13万 - 项目类别:
Scalable Software for Distributed Processing and Visualization of Multi-Site MEG/EEG Datasets
用于多站点 MEG/EEG 数据集分布式处理和可视化的可扩展软件
- 批准号:
9750274 - 财政年份:2018
- 资助金额:
$ 67.13万 - 项目类别:
Sonoelectric tomography (SET): High-resolution noninvasive neuronal current tomography
声电断层扫描 (SET):高分辨率无创神经元电流断层扫描
- 批准号:
9148266 - 财政年份:2015
- 资助金额:
$ 67.13万 - 项目类别:
Sonoelectric tomography (SET): High-resolution noninvasive neuronal current tomography
声电断层扫描 (SET):高分辨率无创神经元电流断层扫描
- 批准号:
9037285 - 财政年份:2015
- 资助金额:
$ 67.13万 - 项目类别:
CRCNS: Advancing Computational Methods to Reveal Human Thalamocortical Dynamics
CRCNS:推进计算方法来揭示人类丘脑皮质动力学
- 批准号:
8837196 - 财政年份:2014
- 资助金额:
$ 67.13万 - 项目类别:














{{item.name}}会员




