Integrating Electromagnetic Multifocal Brain Stimulation and Recording Technologies
集成电磁多焦脑刺激和记录技术
基本信息
- 批准号:10224853
- 负责人:
- 金额:$ 25.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AdoptedAnatomic ModelsAnatomyAreaBrainBrain MappingBrain imagingBrain regionBreathingCommunitiesComputer ModelsComputer softwareDataDevicesDiffusion Magnetic Resonance ImagingElectroencephalographyElectromagneticsElementsFiberFunctional Magnetic Resonance ImagingGeometryHumanImageImaging technologyMagnetoencephalographyMapsMeasuresMethodologyMethodsMicroscopicModelingNeuronsOpticsPathway AnalysisPathway interactionsProtocols documentationPublishingPumpResearchResolutionScanningSourceStimulusStructureSurfaceSystemTechnologyTherapeutic InterventionTimecomputerized toolselectric fieldimaging studyin vivointerestneuroregulationnew technologynoveloptical imagingreconstructionresponsesoftware developmenttoolwhite matter
项目摘要
Project Summary
There is an increasing interest in the use of non-invasive electromagnetic stimulation for therapeutic
interventions as well as understanding of the functioning of the healthy human brain. Most of the tradi-
tional protocols involve stimulation of a single target/focus region. However, evidence is mounting that a
wide range of neuronal processing tasks rely on large-scale networks and their synchronization, sug-
gesting that multi-focal stimulation would be a particularly promising avenue for enhanced neuromodu-
lation protocols. Measuring the response of the brain networks to the stimulation is needed to quantify
the effects and therefore concurrent brain mapping methodologies are necessary. To this end, both
EEG and fMRI have been employed previously. We consider that the key to maximizing the potential of
multi-focal scanning stimulation is the integration of the stimulation and imaging recording as it enables
on-line analysis of the brain responses and also allows closed-loop paradigms to be developed. In this
TRD, we leverage on our unique expertise in electromagnetic brain stimulation, imaging, and computa-
tional modeling to provide a set of tools for the scientific community to promote the integration and ap-
plication of multifocal brain imaging and stimulation. Naturally, the single-channel stimulation system
users will benefit from the developed methods as well. In Aim 1, we will optimize the anatomical and
functional MRI acquisition protocols to enable employing our recently published fast and accurate TMS-
induced electric field (E-field) modeling approach to be adopted to computational targeting. In Aim 2,
we will develop software (MNE-TMS), with an interface between the stimulation and recording devices
that enable real-time analysis of the induced activations using our MNE-CPP platform and control of the
stimulating devices. In Aim 3, we will incorporate the geometrical relationships of the neuronal ele-
ments with respect to the stimulating E-fields need to be determined to understand the activations at
mesoscopic and microscopic levels. In particular, we will extend our previously published methods to
allow accurate reconstructions of the white matter bundles as they exit/enter the cortical mantle with of
1 mm resolution in vivo. We will couple the cortical surface geometry reconstructions to simulate the
effects of the E-field on various neuronal elements that will allow us predicting the likelihood of the
stimulus to engage different activation mechanisms/pathways.
项目概要
人们对使用非侵入性电磁刺激进行治疗越来越感兴趣
干预措施以及对健康人脑功能的了解。大多数传统
常规方案涉及刺激单个目标/焦点区域。然而,越来越多的证据表明
广泛的神经元处理任务依赖于大规模网络及其同步,建议
认为多焦点刺激将是增强神经调节的一个特别有前途的途径
关系协议。需要测量大脑网络对刺激的反应来量化
因此,并行的大脑绘图方法是必要的。为此,双方
脑电图和功能磁共振成像以前已被使用。我们认为,最大限度发挥潜力的关键是
多焦点扫描刺激是刺激和成像记录的集成,因为它能够
在线分析大脑反应,还可以开发闭环范例。在这个
TRD,我们利用我们在电磁脑刺激、成像和计算方面的独特专业知识
化建模为科学界提供一套工具来促进集成和应用
多焦脑成像和刺激的复制。当然,单通道刺激系统
用户也将从开发的方法中受益。在目标 1 中,我们将优化解剖学和
功能性 MRI 采集协议,可采用我们最近发布的快速、准确的 TMS-
用于计算瞄准的感应电场(E-场)建模方法。在目标 2 中,
我们将开发软件(MNE-TMS),在刺激和记录设备之间提供接口
可以使用我们的 MNE-CPP 平台实时分析诱导激活并控制
刺激装置。在目标 3 中,我们将结合神经元元素的几何关系
需要确定有关刺激电场的信息,以了解在
介观和微观层面。特别是,我们将把之前发布的方法扩展到
当白质束退出/进入皮质地幔时,可以准确地重建它们
体内分辨率为 1 毫米。我们将耦合皮质表面几何重建来模拟
电场对各种神经元元件的影响将使我们能够预测
刺激参与不同的激活机制/途径。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MATTI HAMALAINEN其他文献
MATTI HAMALAINEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MATTI HAMALAINEN', 18)}}的其他基金
Integrating Electromagnetic Multifocal Brain Stimulation and Recording Technologies
集成电磁多焦脑刺激和记录技术
- 批准号:
10038182 - 财政年份:2020
- 资助金额:
$ 25.68万 - 项目类别:
Scalable Software for Distributed Processing and Visualization of Multi-Site MEG/EEG Datasets
用于多站点 MEG/EEG 数据集分布式处理和可视化的可扩展软件
- 批准号:
10175064 - 财政年份:2018
- 资助金额:
$ 25.68万 - 项目类别:
Scalable Software for Distributed Processing and Visualization of Multi-Site MEG/EEG Datasets
用于多站点 MEG/EEG 数据集分布式处理和可视化的可扩展软件
- 批准号:
9750274 - 财政年份:2018
- 资助金额:
$ 25.68万 - 项目类别:
Scalable and Sensor-Agnostic Software for Distributed Processing and Visualization of Multi-Site MEG/EEG Datasets
可扩展且与传感器无关的软件,用于多站点 MEG/EEG 数据集的分布式处理和可视化
- 批准号:
10442915 - 财政年份:2018
- 资助金额:
$ 25.68万 - 项目类别:
Sonoelectric tomography (SET): High-resolution noninvasive neuronal current tomography
声电断层扫描 (SET):高分辨率无创神经元电流断层扫描
- 批准号:
9148266 - 财政年份:2015
- 资助金额:
$ 25.68万 - 项目类别:
Sonoelectric tomography (SET): High-resolution noninvasive neuronal current tomography
声电断层扫描 (SET):高分辨率无创神经元电流断层扫描
- 批准号:
9037285 - 财政年份:2015
- 资助金额:
$ 25.68万 - 项目类别:
CRCNS: Advancing Computational Methods to Reveal Human Thalamocortical Dynamics
CRCNS:推进计算方法来揭示人类丘脑皮质动力学
- 批准号:
8837196 - 财政年份:2014
- 资助金额:
$ 25.68万 - 项目类别:














{{item.name}}会员




