Scalable Software for Distributed Processing and Visualization of Multi-Site MEG/EEG Datasets
用于多站点 MEG/EEG 数据集分布式处理和可视化的可扩展软件
基本信息
- 批准号:10175064
- 负责人:
- 金额:$ 54.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAgeAlgorithmsAlzheimer&aposs DiseaseBrainBrain imagingBrain regionClinical ResearchCloud ComputingCodeCognitive deficitsCollaborationsCommunitiesComputer softwareDataData AnalysesData ScientistData SetDatabasesDevelopmentDevicesDiagnosisDiseaseDocumentationEcosystemEducational workshopElectroencephalographyElectrophysiology (science)EnsureEpilepsyExperimental DesignsFinancial compensationFunctional Magnetic Resonance ImagingGuidelinesHeadHead MovementsHourHumanIndividualLaboratoriesLanguage DevelopmentLinkMachine LearningMagnetoencephalographyMaintenanceMapsMeasurementMeasuresMental disordersMethodsModernizationMorphologic artifactsNeurologicNeuronsNeurosciences ResearchNoiseObsessive-Compulsive DisorderOnline SystemsPopulationProcessPythonsReproducibilityResearchResolutionResourcesSchizophreniaScienceScientistSiteStatistical Data InterpretationSystemTechniquesTechnologyTestingTrainingUnited States National Institutes of HealthVisualizationVisualization softwareWritinganalysis pipelineautism spectrum disorderbasecloud basedcluster computingcomputing resourcesdata acquisitiondata analysis pipelinedata exchangefallshuman datainnovationlarge datasetsmillisecondmultithreadingneurovascular couplingnovelopen sourcepedagogysensorsensor technologysoftware developmentsource localizationsymposiumtemporal measurementtoolverification and validation
项目摘要
Project Summary
During the past three decades non-invasive functional brain imaging has developed immensely in terms of
measurement technologies, analysis methods, and innovative paradigms to capture information about brain
function both in healthy and diseased individuals. Although functional MRI (fMRI) has become very useful, it
only provides indirect information about neuronal activity through the neurovascular coupling with a limited
temporal resolution. Magnetoencephalography (MEG) and electroencephalography (EEG) remain the only
available noninvasive techniques capable of directly measuring the electrophysiological activity with a
millisecond resolution. During the past eight years we have developed, with NIH support, the MNE-Python
software, which covers multiple methods of data preprocessing, source localization, statistical analysis, and
estimation of functional connectivity between distributed brain regions. All algorithms and utility functions are
implemented in a consistent manner with well-documented interfaces, enabling users to create M/EEG data
analysis pipelines by writing Python scripts. To further extend our software to meet the needs of a growing user
base and reflect recent developments in the MEG/EEG field we will pursue three specific Aims. In Aim 1 we
will: (i) Create an all-embracing suite of noise cancellation tools incorporating and extending methods present
in different MEG systems; (ii) Implement device independent methods for head-movement determination and
compensation on the basis of head movement data recorded during a MEG session; (iii) Develop methods for
automatic tagging of artifacts using machine learning approaches. In Aim 2 our focus is to extend the software
to make modern distributed computing resources easily usable in processing and to allow for remote
visualization without the need to move large amounts of data across the network. Finally, in Aim 3, we will
continue to develop MNE-Python using best programming practices ensuring multiplatform compatibility,
extensive web-based documentation, training and forums, and hands-on training workshops. As a result of
these developments the MNE-Python will be able to effectively process large number of subjects and huge
amounts data ensuing and from multi-site studies harmoniously across different MEG/EEG systems.
项目摘要
在过去的三十年中,非侵入性脑功能成像在以下方面得到了极大的发展:
测量技术、分析方法和创新范式,以获取有关大脑的信息
在健康和患病的个体中都起作用。虽然功能性磁共振成像(fMRI)已经变得非常有用,
仅通过神经血管偶联提供关于神经元活动的间接信息,
时间分辨率脑磁图(MEG)和脑电图(EEG)仍然是唯一的
能够直接测量电生理活动的可用的非侵入性技术
毫秒分辨率在过去的八年里,我们在NIH的支持下开发了MNE-Python
软件,涵盖数据预处理、源定位、统计分析和
分布的大脑区域之间的功能连接的估计。所有的算法和效用函数都是
以一致的方式实现,并具有记录良好的界面,使用户能够创建M/EEG数据
通过编写Python脚本来分析管道。进一步扩展我们的软件以满足不断增长的用户的需求
基于和反映在脑磁/脑电图领域的最新发展,我们将追求三个具体的目标。在目标1中,
将:(i)创建一套包罗万象的噪音消除工具,整合和扩展现有方法
(ii)实施用于头部移动确定的设备独立方法,
(三)根据MEG会话期间记录的头部运动数据进行补偿;(三)制定方法,
使用机器学习方法自动标记工件。在目标2中,我们的重点是扩展软件
为了使现代分布式计算资源易于在处理中使用,
可视化,而无需在网络上移动大量数据。在目标3中,我们将
继续使用最佳编程实践开发MNE-Python,确保多平台兼容性,
广泛的网络文件、培训和论坛以及实践培训讲习班。的结果
这些发展,MNE-Python将能够有效地处理大量的主题和巨大的
在不同的MEG/EEG系统之间和谐地进行多站点研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MATTI HAMALAINEN其他文献
MATTI HAMALAINEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MATTI HAMALAINEN', 18)}}的其他基金
Integrating Electromagnetic Multifocal Brain Stimulation and Recording Technologies
集成电磁多焦脑刺激和记录技术
- 批准号:
10038182 - 财政年份:2020
- 资助金额:
$ 54.4万 - 项目类别:
Integrating Electromagnetic Multifocal Brain Stimulation and Recording Technologies
集成电磁多焦脑刺激和记录技术
- 批准号:
10224853 - 财政年份:2020
- 资助金额:
$ 54.4万 - 项目类别:
Scalable Software for Distributed Processing and Visualization of Multi-Site MEG/EEG Datasets
用于多站点 MEG/EEG 数据集分布式处理和可视化的可扩展软件
- 批准号:
9750274 - 财政年份:2018
- 资助金额:
$ 54.4万 - 项目类别:
Scalable and Sensor-Agnostic Software for Distributed Processing and Visualization of Multi-Site MEG/EEG Datasets
可扩展且与传感器无关的软件,用于多站点 MEG/EEG 数据集的分布式处理和可视化
- 批准号:
10442915 - 财政年份:2018
- 资助金额:
$ 54.4万 - 项目类别:
Sonoelectric tomography (SET): High-resolution noninvasive neuronal current tomography
声电断层扫描 (SET):高分辨率无创神经元电流断层扫描
- 批准号:
9148266 - 财政年份:2015
- 资助金额:
$ 54.4万 - 项目类别:
Sonoelectric tomography (SET): High-resolution noninvasive neuronal current tomography
声电断层扫描 (SET):高分辨率无创神经元电流断层扫描
- 批准号:
9037285 - 财政年份:2015
- 资助金额:
$ 54.4万 - 项目类别:
CRCNS: Advancing Computational Methods to Reveal Human Thalamocortical Dynamics
CRCNS:推进计算方法来揭示人类丘脑皮质动力学
- 批准号:
8837196 - 财政年份:2014
- 资助金额:
$ 54.4万 - 项目类别:
相似国自然基金
靶向递送一氧化碳调控AGE-RAGE级联反应促进糖尿病创面愈合研究
- 批准号:JCZRQN202500010
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
对香豆酸抑制AGE-RAGE-Ang-1通路改善海马血管生成障碍发挥抗阿尔兹海默病作用
- 批准号:2025JJ70209
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AGE-RAGE通路调控慢性胰腺炎纤维化进程的作用及分子机制
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:面上项目
甜茶抑制AGE-RAGE通路增强突触可塑性改善小鼠抑郁样行为
- 批准号:2023JJ50274
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
蒙药额尔敦-乌日勒基础方调控AGE-RAGE信号通路改善术后认知功能障碍研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
补肾健脾祛瘀方调控AGE/RAGE信号通路在再生障碍性贫血骨髓间充质干细胞功能受损的作用与机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
LncRNA GAS5在2型糖尿病动脉粥样硬化中对AGE-RAGE 信号通路上相关基因的调控作用及机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
围绕GLP1-Arginine-AGE/RAGE轴构建探针组学方法探索大柴胡汤异病同治的效应机制
- 批准号:81973577
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
AGE/RAGE通路microRNA编码基因多态性与2型糖尿病并发冠心病的关联研究
- 批准号:81602908
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
高血糖激活滑膜AGE-RAGE-PKC轴致骨关节炎易感的机制研究
- 批准号:81501928
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341426 - 财政年份:2024
- 资助金额:
$ 54.4万 - 项目类别:
Continuing Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341424 - 财政年份:2024
- 资助金额:
$ 54.4万 - 项目类别:
Continuing Grant
PROTEMO: Emotional Dynamics Of Protective Policies In An Age Of Insecurity
PROTEMO:不安全时代保护政策的情绪动态
- 批准号:
10108433 - 财政年份:2024
- 资助金额:
$ 54.4万 - 项目类别:
EU-Funded
The role of dietary and blood proteins in the prevention and development of major age-related diseases
膳食和血液蛋白在预防和发展主要与年龄相关的疾病中的作用
- 批准号:
MR/X032809/1 - 财政年份:2024
- 资助金额:
$ 54.4万 - 项目类别:
Fellowship
Atomic Anxiety in the New Nuclear Age: How Can Arms Control and Disarmament Reduce the Risk of Nuclear War?
新核时代的原子焦虑:军控与裁军如何降低核战争风险?
- 批准号:
MR/X034690/1 - 财政年份:2024
- 资助金额:
$ 54.4万 - 项目类别:
Fellowship
Walkability and health-related quality of life in Age-Friendly Cities (AFCs) across Japan and the Asia-Pacific
日本和亚太地区老年友好城市 (AFC) 的步行适宜性和与健康相关的生活质量
- 批准号:
24K13490 - 财政年份:2024
- 资助金额:
$ 54.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Discovering the (R)Evolution of EurAsian Steppe Metallurgy: Social and environmental impact of the Bronze Age steppes metal-driven economy
发现欧亚草原冶金的(R)演变:青铜时代草原金属驱动型经济的社会和环境影响
- 批准号:
EP/Z00022X/1 - 财政年份:2024
- 资助金额:
$ 54.4万 - 项目类别:
Research Grant
ICF: Neutrophils and cellular senescence: A vicious circle promoting age-related disease.
ICF:中性粒细胞和细胞衰老:促进与年龄相关疾病的恶性循环。
- 批准号:
MR/Y003365/1 - 财政年份:2024
- 资助金额:
$ 54.4万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Effects of age of acquisition in emerging sign languages
博士论文研究:新兴手语习得年龄的影响
- 批准号:
2335955 - 财政年份:2024
- 资助金额:
$ 54.4万 - 项目类别:
Standard Grant
Shaping Competition in the Digital Age (SCiDA) - Principles, tools and institutions of digital regulation in the UK, Germany and the EU
塑造数字时代的竞争 (SCiDA) - 英国、德国和欧盟的数字监管原则、工具和机构
- 批准号:
AH/Y007549/1 - 财政年份:2024
- 资助金额:
$ 54.4万 - 项目类别:
Research Grant