(PQ12) Targeting SMPDL3b to Prevent Radiation-Induced Nephrotoxicity

(PQ12) 靶向 SMPDL3b 预防辐射引起的肾毒性

基本信息

  • 批准号:
    10442691
  • 负责人:
  • 金额:
    $ 37.41万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY Radiation nephropathy (RN) is less common than chemotherapy-induced nephrotoxicity but still represents a serious late complication after radiation therapies for cancer. RN is irreversible and no effective clinical treatments exist to prevent RN or ameliorate radiation-associated kidney injury. Podocyte loss, tubular atrophy and endothelial damage have been linked with RN, but the molecular mechanisms governing RN are not known. We discovered that the enzyme sphingomyelin-phosphodiesterase-acid-like-3b (SMPDL3b) is an important regulator of radiation damage in renal podocytes after single dose (SD) radiotherapy (RT). Radiation damage reduced SMPDL3b expression triggering the cellular relocation of ezrin and a morphological change that altered podocyte functionality. Treatment with rituximab, which we demonstrated to bind SMPDL3b and to protect podocyte morphology, reduced SD RT induced RN in C57BL/6 mice but not in our newly-developed conditional podocyte-specific SMPDL3b knock-out mice. Based on these data we hypothesize that sphingolipids play a vital role in radiation-induced podocytopathy which governs RN. The objective is to investigate the mechanistic role of SMPDL3b in renal injury after fractionated low-dose radiotherapy (F-RT) with concurrent cisplatin (CDDP) as this represents a standard of care for many solid cancers. Our long-term goal is to discover a molecular-based protective or mitigating strategy for RN, and potentially chemotherapy-induced nephrotoxicity. We will test our hypothesis with the following three specific aims using a combined in vivo-in vitro approach: Aim 1: To determine if SMPDL3b regulates severity and latency of RT-associated kidney injury and functional RN after clinically-relevant F-RT, CDDP and concurrent F-RT+CDDP. This aim will also explore the role of SMPDL3b in tissue tolerance for RT retreatment injury, using C57BL/6 mice and our unique SMPDL3b-knockout and SMPDL3b-inducible mouse models. Aim 2: To determine the mechanism by which podocyte expression of SMPDL3b affects RT-mediated podocyte and glomerular endothelial cell (GEC) injury. We hypothesize that SMPDL3b affects RT induced compartmentalization of podocyte ezrin and affects GECs via altered endothelin-1 (EDN1) and END1 receptor type A (EDNRA) cross talk. GEC survival after RT will be studied by co-culturing GECs with podocytes lacking or expressing SMPDL3b. Aim 3: To determine if targeting sphingolipids prevents RN. We will investigate if protection of SMPDL3b or S1P will avert long-term functional renal injury in C57BL/6 mice after F-RT, CDDP and F-RT+CDDP. Mechanisms will be confirmed using our unique SMPDL3b-knockout and SMPDL3b-inducible mouse models. The findings from these studies will be significant because they offer the potential for molecular-targeted mitigation for RN, and radiation-associated kidney injury, after RT and combined modality injury.
项目摘要 放射性肾病(RN)比化疗引起的肾毒性少见,但仍代表着放射性肾病。 癌症放射治疗后的严重晚期并发症。RN是不可逆的,没有有效的临床 存在预防RN或改善辐射相关的肾损伤的治疗。足细胞丢失,肾小管萎缩 和内皮损伤与RN有关,但控制RN的分子机制尚不清楚。 我们发现,鞘磷脂磷酸二酯酶-酸样-3b(SMPDL 3b)是一种重要的 单剂量(SD)放疗(RT)后肾足细胞辐射损伤的调节因子。辐射损伤 SMPDL 3b表达减少,触发ezrin的细胞重新定位和形态学改变, 足细胞功能利妥昔单抗治疗,我们证明它结合SMPDL 3b, 足细胞形态,减少SD RT诱导的RN在C57 BL/6小鼠,但不是在我们新开发的条件 足细胞特异性SMPDL 3b敲除小鼠。基于这些数据,我们假设鞘脂在 在控制RN的辐射诱导足细胞病中的作用。 目的是研究SMPDL 3b在分次小剂量肾损伤中的作用机制。 放疗(F-RT)与顺铂(CDDP)并行,因为这代表了许多实体瘤的标准治疗。 癌的我们的长期目标是发现一种基于分子的RN保护或缓解策略, 潜在的化疗诱导的肾毒性。我们将用以下三个具体的例子来检验我们的假设。 目的是使用体内-体外联合方法: 目的1:确定SMPDL 3b是否调节RT相关肾损伤的严重性和潜伏期以及功能性肾损伤。 临床相关F-RT、CDDP和同时F-RT+CDDP后的RN。这一目标还将探讨 使用C57 BL/6小鼠和我们独特的SMPDL 3b敲除, 和SMPDL 3b诱导型小鼠模型。 目的2:探讨足细胞表达SMPDL 3b影响RT介导的足细胞的机制 和肾小球内皮细胞(GEC)损伤。我们假设SMPDL 3b影响RT诱导的 足细胞Ezrin的区室化,并通过改变内皮素-1(EDN 1)和END 1受体影响GECs A型(EDNRA)串扰。RT后GEC存活将通过将GEC与缺乏足细胞的足细胞共培养来研究。 或表达SMPDL 3b。 目的3:确定靶向鞘脂是否可预防RN。我们将调查SMPDL 3b或S1 P的保护是否 将避免F-RT、CDDP和F-RT+CDDP后C57 BL/6小鼠的长期功能性肾损伤。机制 将使用我们独特的SMPDL 3b敲除和SMPDL 3b诱导型小鼠模型进行确认。 这些研究的结果将是重要的,因为它们提供了分子靶向的潜力。 缓解RT和联合治疗损伤后的RN和放射相关肾损伤。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Detection and Quantification of Lipid Droplets in Differentiated Human Podocytes.
分化的人足细胞中脂滴的检测和定量。
  • DOI:
    10.1007/978-1-4939-9488-5_17
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mallela,ShamroopKumar;Patel,DevangMaheshkumar;Ducasa,GloriaMichelle;Merscher,Sandra;Fornoni,Alessia;Al-Ali,Hassan
  • 通讯作者:
    Al-Ali,Hassan
Noninvasive assessment of radiation-induced renal injury in mice.
  • DOI:
    10.1080/09553002.2021.1876950
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Ahmad A;Shi J;Ansari S;Afaghani J;Molina J;Pollack A;Merscher S;Zeidan YH;Fornoni A;Marples B
  • 通讯作者:
    Marples B
Role of Sphingolipid Signaling in Glomerular Diseases: Focus on DKD and FSGS.
  • DOI:
    10.33696/signaling.1.013
  • 发表时间:
    2020-09-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mitrofanova, Alla;Drexler, Yelena;Fornoni, Alessia
  • 通讯作者:
    Fornoni, Alessia
Sphingomyelin phosphodiesterase acid like 3B (SMPDL3b) regulates Perilipin5 (PLIN5) expression and mediates lipid droplet formation.
  • DOI:
    10.1016/j.gendis.2021.12.014
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    Mallela SK;Ge M;Molina J;Santos JV;Kim JJ;Mitrofanova A;Al-Ali H;Marples B;Merscher S;Fornoni A
  • 通讯作者:
    Fornoni A
ABCA1 deficiency contributes to podocyte pyroptosis priming via the APE1/IRF1 axis in diabetic kidney disease.
  • DOI:
    10.1038/s41598-023-35499-5
  • 发表时间:
    2023-06-14
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

BRIAN MARPLES其他文献

BRIAN MARPLES的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('BRIAN MARPLES', 18)}}的其他基金

Targeting macrophages to reduce the combined injury effects of radiation and virus exposure
靶向巨噬细胞以减少辐射和病毒暴露的综合损伤效应
  • 批准号:
    10452344
  • 财政年份:
    2022
  • 资助金额:
    $ 37.41万
  • 项目类别:
Targeting macrophages to reduce the combined injury effects of radiation and virus exposure
靶向巨噬细胞以减少辐射和病毒暴露的综合损伤效应
  • 批准号:
    10618330
  • 财政年份:
    2022
  • 资助金额:
    $ 37.41万
  • 项目类别:
(PQ12) Targeting SMPDL3b to Prevent Radiation-Induced Nephrotoxicity
(PQ12) 靶向 SMPDL3b 预防辐射引起的肾毒性
  • 批准号:
    10163078
  • 财政年份:
    2018
  • 资助金额:
    $ 37.41万
  • 项目类别:

相似国自然基金

具有抗癌活性的天然产物金霉酸(Aureolic acids)全合成与选择性构建2-脱氧糖苷键
  • 批准号:
    22007039
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
海洋放线菌来源聚酮类化合物Pteridic acids生物合成机制研究
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
手性Lewis Acids催化的分子内串联1,5-氢迁移/环合反应及其在构建结构多样性手性含氮杂环化合物中的应用
  • 批准号:
    21372217
  • 批准年份:
    2013
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目
对空气稳定的新型的有机金属Lewis Acids催化剂制备、表征与应用研究
  • 批准号:
    21172061
  • 批准年份:
    2011
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
钛及含钛Lewis acids促臭氧/过氧化氢体系氧化性能的广普性、高效性及其机制
  • 批准号:
    21176225
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于Zip Nucleic Acids引物对高度降解和低拷贝DNA检材的STR分型研究
  • 批准号:
    81072511
  • 批准年份:
    2010
  • 资助金额:
    31.0 万元
  • 项目类别:
    面上项目
海洋天然产物Makaluvic acids 的全合成及其对南海鱼虱存活的影响
  • 批准号:
    30660215
  • 批准年份:
    2006
  • 资助金额:
    21.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Lipid nanoparticle-mediated Inhalation delivery of anti-viral nucleic acids
脂质纳米颗粒介导的抗病毒核酸的吸入递送
  • 批准号:
    502577
  • 财政年份:
    2024
  • 资助金额:
    $ 37.41万
  • 项目类别:
CAREER: Highly Rapid and Sensitive Nanomechanoelectrical Detection of Nucleic Acids
职业:高度快速、灵敏的核酸纳米机电检测
  • 批准号:
    2338857
  • 财政年份:
    2024
  • 资助金额:
    $ 37.41万
  • 项目类别:
    Continuing Grant
Double Incorporation of Non-Canonical Amino Acids in an Animal and its Application for Precise and Independent Optical Control of Two Target Genes
动物体内非规范氨基酸的双重掺入及其在两个靶基因精确独立光学控制中的应用
  • 批准号:
    BB/Y006380/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.41万
  • 项目类别:
    Research Grant
Quantifying L-amino acids in Ryugu to constrain the source of L-amino acids in life on Earth
量化 Ryugu 中的 L-氨基酸以限制地球生命中 L-氨基酸的来源
  • 批准号:
    24K17112
  • 财政年份:
    2024
  • 资助金额:
    $ 37.41万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Synthetic analogues based on metabolites of omega-3 fatty acids protect mitochondria in aging hearts
基于 omega-3 脂肪酸代谢物的合成类似物可保护衰老心脏中的线粒体
  • 批准号:
    477891
  • 财政年份:
    2023
  • 资助金额:
    $ 37.41万
  • 项目类别:
    Operating Grants
Metabolomic profiles of responders and non-responders to an omega-3 fatty acids supplementation.
对 omega-3 脂肪酸补充剂有反应和无反应者的代谢组学特征。
  • 批准号:
    495594
  • 财政年份:
    2023
  • 资助金额:
    $ 37.41万
  • 项目类别:
Molecular recognition and enantioselective reaction of amino acids
氨基酸的分子识别和对映选择性反应
  • 批准号:
    23K04668
  • 财政年份:
    2023
  • 资助金额:
    $ 37.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Integrated understanding and manipulation of hypoxic cellular functions by artificial nucleic acids with hypoxia-accumulating properties
具有缺氧累积特性的人工核酸对缺氧细胞功能的综合理解和操纵
  • 批准号:
    23H02086
  • 财政年份:
    2023
  • 资助金额:
    $ 37.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Basic research toward therapeutic strategies for stress-induced chronic pain with non-natural amino acids
非天然氨基酸治疗应激性慢性疼痛策略的基础研究
  • 批准号:
    23K06918
  • 财政年份:
    2023
  • 资助金额:
    $ 37.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Molecular mechanisms how arrestins that modulate localization of glucose transporters are phosphorylated in response to amino acids
调节葡萄糖转运蛋白定位的抑制蛋白如何响应氨基酸而被磷酸化的分子机制
  • 批准号:
    23K05758
  • 财政年份:
    2023
  • 资助金额:
    $ 37.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了