Next Generation Computational Tools for Functional Genomics
下一代功能基因组学计算工具
基本信息
- 批准号:10448436
- 负责人:
- 金额:$ 69.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-22 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:ATAC-seqAddressAffectAlgorithmsAreaAutomobile DrivingBar CodesBase SequenceBindingBioconductorBiologicalCellsChIP-seqChromatinCommunitiesComplexComputer softwareDataData AnalyticsData SetDeoxyribonucleasesDevelopmentDiseaseElementsGene ExpressionGene Expression RegulationGenesGenomicsIndividualIntuitionJointsKnowledgeMapsMeasurementMethodologyMethodsModelingMorphologic artifactsNatureOutcomePaperPerformanceProcessProteinsProtocols documentationPythonsRNARegulatory ElementResearchResearch PersonnelSignal TransductionSorting - Cell MovementSourceSpeedStatistical ModelsTechnologyTimeTissuesVariantWorkbasecell typecomputerized toolsdata integrationexperiencefunctional genomicsgenomic datahigh throughput analysishigh throughput technologyimprovedlarge datasetsnew technologynext generationnext generation sequencingopen sourceresponsesingle cell technologysingle-cell RNA sequencingtooltranscription factoruser-friendlywhole genome
项目摘要
PROJECT SUMMARY
During the last decade, Next Generation Sequencing (NGS) applications have expanded to include
measurement of dynamic outcomes underlying genomic function in development and disease. Measurements
related to functional elements that act at the protein and RNA levels, and regulatory elements that control gene
activity, are at the core of studies undertaken by large consortia and individual labs alike. These
measurements introduce levels of variability that give rise to data analytic challenges related to distinguishing
unwanted or uninterested sources of variability, from biologically relevant signals. Furthermore, new
technologies and improved data analytic ideas are giving rise to a need for new mapping algorithms to facilitate
deployment on increasingly larger datasets. While existing tools have provided effective ways to process and
analyze data in functional genomics studies, new technologies, more complex biological questions, and the
availability of increasingly complete datasets are posing new challenges. Single cell RNA-seq and single cell
ATAC-seq technologies in particular have introduced complexities that current tools are not optimized to
address.
Our team has extensive experience developing computational tools and statistical methodology for functional
genomics, disseminated as open source software. Many of our methods have become standards among users
of high-throughput technologies and are commonly included as part of standard pipelines. Combined, these
software packages receive hundreds of thousands of downloads each year and the papers describing the
methods have been cited tens of thousands of times. Furthermore, Dr. Irizarry (PI) is a leader in the
Bioconductor project, one of the most widely used open-source projects for the analysis of high-throughput
genomics data which has greatly facilitated the development and dissemination of our and others
state-of-the-art statistical methodologies.
We have identified three specific computational challenges urgently requiring new or improved solutions that
can greatly benefit from our expertise. Namely, we propose to develop: fast and accurate read mapping
specialized for count-focused sequencing data; develop a unified statistical approach for normalization and
downstream analysis; developing computational tools to integrate scATAC-seq data with scRNA-seq and using
public data to facilitate annotation and functional interpretation. We plan to disseminate our tools via open
source software and provide a user friendly suite of packages that functional genomics researchers can use to
extract knowledge from their single cell RNA-seq or ATAC-seq data.
项目总结
在过去的十年中,下一代测序(NGS)应用已经扩展到包括
测量发育和疾病中潜在的基因组功能的动态结果。测量结果
与在蛋白质和RNA水平上起作用的功能元件以及控制基因的调节元件有关
活动,是大财团和单个实验室进行的研究的核心。这些
测量引入了可变性水平,这导致了与区分相关的数据分析挑战
来自生物相关信号的不想要的或不感兴趣的可变性来源。此外,新的
技术和改进的数据分析思想催生了对新的映射算法的需求,以促进
部署在越来越大的数据集上。虽然现有工具提供了有效的方法来处理和
分析功能基因组研究中的数据,新技术,更复杂的生物学问题,以及
越来越完整的数据集的可用性带来了新的挑战。单细胞RNA-seq和单细胞
尤其是atac-seq技术引入了当前工具没有针对其进行优化的复杂性。
地址。
我们的团队在开发计算工具和统计方法方面拥有丰富的经验
基因组学,作为开源软件传播。我们的许多方法已经成为用户的标准
作为高通量技术的一部分,通常作为标准管道的一部分。加在一起,这些
软件包每年获得数十万的下载量,描述
这些方法已经被引用了数万次。此外,Irizarry博士(PI)是
BioConductor项目,用于高通量分析的最广泛使用的开源项目之一
基因组学数据,极大地促进了我们和其他人的发展和传播
最先进的统计方法。
我们已经确定了三个特定的计算挑战,迫切需要新的或改进的解决方案,
可以极大地受益于我们的专业知识。也就是说,我们建议开发:快速准确的读图
专门处理以计数为重点的测序数据;开发统一的统计方法进行标准化和
下游分析;开发计算工具以将scatac-seq数据与scrna-seq整合,并使用
公共数据,以方便注释和功能解释。我们计划通过开放的方式传播我们的工具
源码软件,并提供一套用户友好的软件包,供功能基因组学研究人员使用
从他们的单细胞RNA-seq或atac-seq数据中提取知识。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rafael Angel Irizarry其他文献
Rafael Angel Irizarry的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rafael Angel Irizarry', 18)}}的其他基金
Next Generation Computational Tools for Functional Genomics
下一代功能基因组学计算工具
- 批准号:
9979396 - 财政年份:2020
- 资助金额:
$ 69.86万 - 项目类别:
Next Generation Computational Tools for Functional Genomics
下一代功能基因组学计算工具
- 批准号:
10666501 - 财政年份:2020
- 资助金额:
$ 69.86万 - 项目类别:
Next Generation Computational Tools for Functional Genomics
下一代功能基因组学计算工具
- 批准号:
10267687 - 财政年份:2020
- 资助金额:
$ 69.86万 - 项目类别:
Data Analysis Tools for Emerging High-Throughput Technologies
适用于新兴高通量技术的数据分析工具
- 批准号:
10461727 - 财政年份:2019
- 资助金额:
$ 69.86万 - 项目类别:
Data Analysis Tools for Emerging High-Throughput Technologies
适用于新兴高通量技术的数据分析工具
- 批准号:
9922327 - 财政年份:2019
- 资助金额:
$ 69.86万 - 项目类别:
Data Analysis Tools for Emerging High-Throughput Technologies
适用于新兴高通量技术的数据分析工具
- 批准号:
10159937 - 财政年份:2019
- 资助金额:
$ 69.86万 - 项目类别:
Data Analysis Tools for Emerging High-Throughput Technologies
适用于新兴高通量技术的数据分析工具
- 批准号:
10612937 - 财政年份:2019
- 资助金额:
$ 69.86万 - 项目类别:
Biomedical Data Science Online Curriculum on HarvardX
HarvardX 生物医学数据科学在线课程
- 批准号:
8829975 - 财政年份:2014
- 资助金额:
$ 69.86万 - 项目类别:
Biomedical Data Science Online Curriculum on HarvardX
HarvardX 生物医学数据科学在线课程
- 批准号:
9130901 - 财政年份:2014
- 资助金额:
$ 69.86万 - 项目类别:
Analysis Tools and Software for Second Generation Sequencing Data
第二代测序数据的分析工具和软件
- 批准号:
8280415 - 财政年份:2010
- 资助金额:
$ 69.86万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 69.86万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 69.86万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 69.86万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 69.86万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 69.86万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 69.86万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 69.86万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 69.86万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 69.86万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 69.86万 - 项目类别:
Research Grant