Data Analysis Tools for Emerging High-Throughput Technologies
适用于新兴高通量技术的数据分析工具
基本信息
- 批准号:10612937
- 负责人:
- 金额:$ 59.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AdoptionAffectAlgorithmsBasic ScienceBiologicalBiomedical ResearchComputer softwareDNA MethylationDNA SequenceDataData AnalysesData AnalyticsData SetDatabase Management SystemsDevelopmentDiseaseFarGoGene ExpressionGoalsInvestigationLaboratoriesMeasurementMeasuresMethodologyMolecularNational Research CouncilNucleic AcidsOutcomePhenotypeProtocols documentationProvincePublicationsResearch PersonnelSamplingScanningSignal TransductionSourceStatistical MethodsSystematic BiasTechniquesTechnologyTranslational ResearchVariantWorkclinical applicationcomplex dataflexibilityfrontierhigh throughput technologyimprovedindexinginterestprecision medicinesuccesstool
项目摘要
Project Summary
Biomedical research and the basic sciences are increasingly dependent on high-throughput technologies that have the
ability to simultaneously measure thousands of nucleic acid molecules in a sample. In combination with ingenious
laboratory protocols, these technologies have permitted unprecedented ways of studying the molecular basis of
disease and phenotypic variation. As a result of the increasing adoption of these technologies, more investigations
rely on complex datasets and require the development of new statistical techniques to adequately interpret data.
Today, high-throughput technologies applications go far beyond their original task of studying DNA sequence
itself and also include the measurement of quantitative and dynamic outcomes such as gene expression levels and
DNA methylation (DNAm) status. These quantitative and dynamic outcomes introduce levels of variability that
give rise to further data analytic challenges related to distinguishing unwanted sources of variability from bio-
logically relevant signals. Furthermore, when measuring these quantitative outcomes, data are subject to severe
technological and biological biases that can substantially impact downstream analyses. Our group has previously
demonstrated that statistical methodology can provide great improvements over ad-hoc algorithms offered as de-
faults by technology developers. Our highly cited statistical methodology and our widely used software demonstrate
the success of our work.
The National Research Council's Frontiers in Massive Data Analysis publication states that, “the challenges
for massive data go beyond the storage, indexing, and querying that have been the province of classical database
systems and instead hinge on the ambitious goal of inference”. Inference is particularly relevant in biomedical
applications since we often look to draw conclusions based on observed differences between groups in the presence
of within group variability. Two particularly challenging tasks relate to performing valid inference when 1) we
perform scans over large spaces to identify small regions of interests and 2) the data is affected by unexpected
systematic bias or batch effects. We will focus on these two general challenges. Our specific proposal is to work on
the most urgent needs of researchers facing new challenges as they increasingly rely on high-throughput techniques.
We will leverage the expertise of our collaborators to prioritize projects. We greatly appreciate the flexibility
permitted by the R35 mechanism as it will help us maximize the impact of our work.
项目摘要
生物医学研究和基础科学越来越依赖高通量技术,这些技术具有
能够同时测量样本中的数千个核酸分子。与独具匠心的
实验室协议,这些技术已经允许前所未有的方法来研究分子基础
疾病和表型变异。由于越来越多地采用这些技术,更多的调查
依赖复杂的数据集,需要开发新的统计技术来充分解释数据。
今天,高通量技术的应用远远超出了研究dna序列的原始任务。
还包括对定量和动态结果的测量,如基因表达水平和
DNA甲基化(DNaM)状态。这些定量的和动态的结果引入了可变性的水平
引发了与区分不需要的可变性来源和生物来源相关的进一步数据分析挑战
逻辑上相关的信号。此外,在衡量这些量化结果时,数据受到严重影响
可能对下游分析产生重大影响的技术和生物偏差。我们小组之前已经
证明了统计方法可以提供比ff的自组织算法更大的改进
技术开发人员的失误。我们被广泛引用的统计方法和我们广泛使用的软件表明
为我们工作的成功干杯。
国家研究委员会的《海量数据分析中的前沿》出版物指出,
对于海量数据,已经超越了传统数据库的存储、索引和查询
而是依赖于雄心勃勃的推理目标“。推论在生物医学中尤其相关
应用程序,因为我们经常希望根据观察到的存在的组之间的差异来得出结论
集团内部的可变性。两项特别具有挑战性的任务与执行有效推理有关,当1)我们
对大片空间执行扫描,以确定感兴趣的小区域;2)数据是意外检测到的ff
系统性偏差或批量ff等。我们将重点关注这两个普遍的挑战。我们的特殊fic建议是致力于
最迫切的需求是研究人员面临着新的挑战,因为他们越来越依赖高通量技术。
我们将利用我们的合作者的专业知识来确定项目的优先顺序。我们非常欣赏fl的灵活性
这是R35机制允许的,因为它将帮助我们最大限度地发挥我们工作的影响。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Discovery of antibodies and cognate surface targets for ovarian cancer by surface profiling.
- DOI:10.1073/pnas.2206751120
- 发表时间:2023-01-03
- 期刊:
- 影响因子:11.1
- 作者:
- 通讯作者:
Detection of renal cell carcinoma using plasma and urine cell-free DNA methylomes.
- DOI:10.1038/s41591-020-0933-1
- 发表时间:2020-07
- 期刊:
- 影响因子:82.9
- 作者:Nuzzo PV;Berchuck JE;Korthauer K;Spisak S;Nassar AH;Abou Alaiwi S;Chakravarthy A;Shen SY;Bakouny Z;Boccardo F;Steinharter J;Bouchard G;Curran CR;Pan W;Baca SC;Seo JH;Lee GM;Michaelson MD;Chang SL;Waikar SS;Sonpavde G;Irizarry RA;Pomerantz M;De Carvalho DD;Choueiri TK;Freedman ML
- 通讯作者:Freedman ML
Effectiveness estimates of three COVID-19 vaccines based on observational data from Puerto Rico.
- DOI:10.1016/j.lana.2022.100212
- 发表时间:2022-05
- 期刊:
- 影响因子:0
- 作者:Robles-Fontán MM;Nieves EG;Cardona-Gerena I;Irizarry RA
- 通讯作者:Irizarry RA
Differential richness inference for 16S rRNA marker gene surveys.
- DOI:10.1186/s13059-022-02722-x
- 发表时间:2022-08-01
- 期刊:
- 影响因子:12.3
- 作者:
- 通讯作者:
All-cause excess mortality across 90 municipalities in Gujarat, India, during the COVID-19 pandemic (March 2020-April 2021).
- DOI:10.1371/journal.pgph.0000824
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rafael Angel Irizarry其他文献
Rafael Angel Irizarry的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rafael Angel Irizarry', 18)}}的其他基金
Next Generation Computational Tools for Functional Genomics
下一代功能基因组学计算工具
- 批准号:
9979396 - 财政年份:2020
- 资助金额:
$ 59.68万 - 项目类别:
Next Generation Computational Tools for Functional Genomics
下一代功能基因组学计算工具
- 批准号:
10666501 - 财政年份:2020
- 资助金额:
$ 59.68万 - 项目类别:
Next Generation Computational Tools for Functional Genomics
下一代功能基因组学计算工具
- 批准号:
10267687 - 财政年份:2020
- 资助金额:
$ 59.68万 - 项目类别:
Next Generation Computational Tools for Functional Genomics
下一代功能基因组学计算工具
- 批准号:
10448436 - 财政年份:2020
- 资助金额:
$ 59.68万 - 项目类别:
Data Analysis Tools for Emerging High-Throughput Technologies
适用于新兴高通量技术的数据分析工具
- 批准号:
10461727 - 财政年份:2019
- 资助金额:
$ 59.68万 - 项目类别:
Data Analysis Tools for Emerging High-Throughput Technologies
适用于新兴高通量技术的数据分析工具
- 批准号:
9922327 - 财政年份:2019
- 资助金额:
$ 59.68万 - 项目类别:
Data Analysis Tools for Emerging High-Throughput Technologies
适用于新兴高通量技术的数据分析工具
- 批准号:
10159937 - 财政年份:2019
- 资助金额:
$ 59.68万 - 项目类别:
Biomedical Data Science Online Curriculum on HarvardX
HarvardX 生物医学数据科学在线课程
- 批准号:
8829975 - 财政年份:2014
- 资助金额:
$ 59.68万 - 项目类别:
Biomedical Data Science Online Curriculum on HarvardX
HarvardX 生物医学数据科学在线课程
- 批准号:
9130901 - 财政年份:2014
- 资助金额:
$ 59.68万 - 项目类别:
Analysis Tools and Software for Second Generation Sequencing Data
第二代测序数据的分析工具和软件
- 批准号:
8806870 - 财政年份:2010
- 资助金额:
$ 59.68万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 59.68万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 59.68万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 59.68万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 59.68万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 59.68万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 59.68万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 59.68万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 59.68万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 59.68万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 59.68万 - 项目类别:
Grant-in-Aid for Early-Career Scientists