Data Analysis Tools for Emerging High-Throughput Technologies
适用于新兴高通量技术的数据分析工具
基本信息
- 批准号:10461727
- 负责人:
- 金额:$ 59.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AdoptionAffectAlgorithmsBasic ScienceBiologicalBiomedical ResearchComplexComputer softwareDNA MethylationDNA SequenceDataData AnalysesData AnalyticsData SetDatabase Management SystemsDevelopmentFarGoGene ExpressionGoalsInvestigationLaboratoriesMeasurementMeasuresMethodologyMolecularNational Research CouncilNucleic AcidsOutcomeProtocols documentationProvincePublicationsResearch PersonnelSamplingScanningSignal TransductionSourceStatistical MethodsSystematic BiasTechniquesTechnologyTranslational ResearchVariantWorkbaseclinical applicationdisease phenotypeflexibilityfrontierhigh throughput technologyindexinginterestprecision medicinesuccesstool
项目摘要
Project Summary
Biomedical research and the basic sciences are increasingly dependent on high-throughput technologies that have the
ability to simultaneously measure thousands of nucleic acid molecules in a sample. In combination with ingenious
laboratory protocols, these technologies have permitted unprecedented ways of studying the molecular basis of
disease and phenotypic variation. As a result of the increasing adoption of these technologies, more investigations
rely on complex datasets and require the development of new statistical techniques to adequately interpret data.
Today, high-throughput technologies applications go far beyond their original task of studying DNA sequence
itself and also include the measurement of quantitative and dynamic outcomes such as gene expression levels and
DNA methylation (DNAm) status. These quantitative and dynamic outcomes introduce levels of variability that
give rise to further data analytic challenges related to distinguishing unwanted sources of variability from bio-
logically relevant signals. Furthermore, when measuring these quantitative outcomes, data are subject to severe
technological and biological biases that can substantially impact downstream analyses. Our group has previously
demonstrated that statistical methodology can provide great improvements over ad-hoc algorithms offered as de-
faults by technology developers. Our highly cited statistical methodology and our widely used software demonstrate
the success of our work.
The National Research Council's Frontiers in Massive Data Analysis publication states that, “the challenges
for massive data go beyond the storage, indexing, and querying that have been the province of classical database
systems and instead hinge on the ambitious goal of inference”. Inference is particularly relevant in biomedical
applications since we often look to draw conclusions based on observed differences between groups in the presence
of within group variability. Two particularly challenging tasks relate to performing valid inference when 1) we
perform scans over large spaces to identify small regions of interests and 2) the data is affected by unexpected
systematic bias or batch effects. We will focus on these two general challenges. Our specific proposal is to work on
the most urgent needs of researchers facing new challenges as they increasingly rely on high-throughput techniques.
We will leverage the expertise of our collaborators to prioritize projects. We greatly appreciate the flexibility
permitted by the R35 mechanism as it will help us maximize the impact of our work.
项目概要
生物医学研究和基础科学越来越依赖于高通量技术
能够同时测量样品中数千个核酸分子。与巧妙的结合
实验室协议,这些技术提供了前所未有的方法来研究分子基础
疾病和表型变异。由于这些技术的越来越多的采用,更多的调查
依赖复杂的数据集,需要开发新的统计技术来充分解释数据。
如今,高通量技术的应用远远超出了研究 DNA 序列的最初任务
本身还包括定量和动态结果的测量,例如基因表达水平和
DNA 甲基化 (DNAm) 状态。这些定量和动态的结果引入了可变性水平,
引起进一步的数据分析挑战,这些挑战与区分不需要的变异来源和生物变异有关。
逻辑上相关的信号。此外,在衡量这些定量结果时,数据会受到严重影响
可能严重影响下游分析的技术和生物学偏差。我们组此前曾
证明统计方法可以比临时算法提供很大的改进
技术开发人员的错误。我们被广泛引用的统计方法和广泛使用的软件证明
我们工作的成功。
国家研究委员会的《海量数据分析前沿》出版物指出,“挑战
对于海量数据,超越了传统数据库的存储、索引和查询范围
系统,而是取决于推理的雄心勃勃的目标”。推理在生物医学中尤其重要
应用程序,因为我们经常希望根据存在的组之间观察到的差异得出结论
组内变异性。两项特别具有挑战性的任务与执行有效推理有关:1)我们
对大空间进行扫描以识别感兴趣的小区域,并且 2) 数据受到意外情况的影响
系统偏差或批次效应。我们将重点关注这两个普遍挑战。我们的具体建议是致力于
随着越来越多地依赖高通量技术,研究人员面临新挑战的最迫切需求。
我们将利用合作者的专业知识来确定项目的优先顺序。我们非常欣赏这种灵活性
R35 机制允许,因为它将帮助我们最大限度地发挥我们工作的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rafael Angel Irizarry其他文献
Rafael Angel Irizarry的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rafael Angel Irizarry', 18)}}的其他基金
Next Generation Computational Tools for Functional Genomics
下一代功能基因组学计算工具
- 批准号:
9979396 - 财政年份:2020
- 资助金额:
$ 59.68万 - 项目类别:
Next Generation Computational Tools for Functional Genomics
下一代功能基因组学计算工具
- 批准号:
10666501 - 财政年份:2020
- 资助金额:
$ 59.68万 - 项目类别:
Next Generation Computational Tools for Functional Genomics
下一代功能基因组学计算工具
- 批准号:
10267687 - 财政年份:2020
- 资助金额:
$ 59.68万 - 项目类别:
Next Generation Computational Tools for Functional Genomics
下一代功能基因组学计算工具
- 批准号:
10448436 - 财政年份:2020
- 资助金额:
$ 59.68万 - 项目类别:
Data Analysis Tools for Emerging High-Throughput Technologies
适用于新兴高通量技术的数据分析工具
- 批准号:
9922327 - 财政年份:2019
- 资助金额:
$ 59.68万 - 项目类别:
Data Analysis Tools for Emerging High-Throughput Technologies
适用于新兴高通量技术的数据分析工具
- 批准号:
10159937 - 财政年份:2019
- 资助金额:
$ 59.68万 - 项目类别:
Data Analysis Tools for Emerging High-Throughput Technologies
适用于新兴高通量技术的数据分析工具
- 批准号:
10612937 - 财政年份:2019
- 资助金额:
$ 59.68万 - 项目类别:
Biomedical Data Science Online Curriculum on HarvardX
HarvardX 生物医学数据科学在线课程
- 批准号:
8829975 - 财政年份:2014
- 资助金额:
$ 59.68万 - 项目类别:
Biomedical Data Science Online Curriculum on HarvardX
HarvardX 生物医学数据科学在线课程
- 批准号:
9130901 - 财政年份:2014
- 资助金额:
$ 59.68万 - 项目类别:
Analysis Tools and Software for Second Generation Sequencing Data
第二代测序数据的分析工具和软件
- 批准号:
8280415 - 财政年份:2010
- 资助金额:
$ 59.68万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 59.68万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 59.68万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 59.68万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 59.68万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 59.68万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 59.68万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 59.68万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 59.68万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 59.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 59.68万 - 项目类别:
Studentship














{{item.name}}会员




