Data Detectives: Using Real Data to Solve Real Community Health Problems
数据侦探:使用真实数据解决真实的社区健康问题
基本信息
- 批准号:10450211
- 负责人:
- 金额:$ 27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:Active LearningAddressAreaAttitudeBig DataBiologicalBiomedical TechnologyBlack raceCOVID-19 pandemicCommunitiesCommunity HealthComputerized Medical RecordCreativenessDataData ScienceData SetData SourcesDigital LibrariesEconomicsEducational CurriculumEducational process of instructingEnvironmentEvaluationExerciseFemaleFoundationsFutureGenomicsGeographyGoalsHealthHealth StatusHispanicImageIndividualK-12 studentKnowledgeLaboratoriesLife StyleLiteratureMalignant NeoplasmsMeasuresMentorsMethodsMiddle School StudentMinorityMinority GroupsModelingMotivationNational Institute of General Medical SciencesNatureNeeds AssessmentOutcomePatient CarePhysiologicalPoliciesPopulationPositioning AttributeProblem-Based LearningProgram EvaluationProteomicsQualitative EvaluationsQuantitative EvaluationsReproducibilityResearchRuralRural CommunitySTEM careerSTEM fieldSchoolsScienceSelf EfficacyStudentsTranslatingUnderrepresented MinorityWomen&aposs Groupbasecareerclinical carecohortcommunity involvementcomplex datadirect applicationeducation researchexperiencehealth assessmenthealth disparityhealth equityimprovedinnovationjunior high schoolmathematics contentmetabolomicsnovelpopulation basedprogramsrecruitscience educationskillssocial health determinantssocioeconomicsstudent participationtool
项目摘要
Abstract
Data sciences represent key advances for multiple areas of discovery in science and health. However, despite
such vast innovations in data science, as is the case with other STEM fields, key groups are significantly under-
represented in the current and projected workforce, particularly female and under-represented minority groups
(Hispanic or Black). In addition, individuals from rural communities and lower socio-economic backgrounds are
less likely to pursue STEM careers and study data sciences. We hypothesize that providing students with a
curriculum focused on using population-level Big Data for community health needs assessment, planning,
analysis, evaluation, and application will improve students’ understanding of the importance of science and Big
Data beyond the laboratory or classroom. We envision such a program will engage students by making science
more applicable. To address the gaps in the literature and the lack of practical tools to teach students how to
both use and apply population-based Big Data, we will pursue the following Specific Aims for our new SEPA
program, Data Detectives: Using Real Data to Solve Real Community Health Problems: 1) to implement a
novel, problem-based, experiential learning curriculum to teach under-represented middle school students
science and mathematics content and data science principles with direct application to community-based health
issues; 2) to conduct a robust evaluation of the program with measures of student knowledge, attitudes, self-
efficacy, and pursuit of future STEM careers; and 3) to prepare for broad dissemination of the curriculum
throughout Georgia and the US. This program will provide the foundation for K-12 students to use real data to
solve real problems focusing on improving health outcomes for communities. The proposed SEPA program
meets three NIGMS priority areas: A) teaching students to use Big Data instills needed computational and
quantitative skills; B) the curriculum demonstrates applicability to the real world by using problem-based learning
(PBL) to challenge students to solve real community-level heath problems using real population-based data; and
C) the program follows a robust mixed methods evaluation plan to measure both quantitative and qualitative
outcomes. The Research Education Program plan addresses the three Specific Aims and includes rationale for
adaptation of the Problem-Based Learning model; a detailed curriculum aligned with MS NGSS; clear
identification of population-based datasets to be used; explicit examples of PBL scenarios; a thorough diversity
recruitment plan with access to a large, diverse student applicant pool; and clear input from expert community
partners and evaluation experts. The Dissemination Plan will share the curriculum and materials across Georgia
and the U.S. The ability to evaluate this curriculum in a cohort of middle school students, to measure its effect
on potential for future STEM careers, and then ultimately disseminate it nationally to schools and informal science
education programs, has the capacity to impact K-12 educational approaches in new and important ways.
抽象的
数据科学代表了科学和健康发现多个发现领域的关键进展。但是,需求
数据科学的巨大创新,与其他STEM领域一样,关键群体明显不足
在当前和预计的劳动力中代表,尤其是女性和代表性不足的少数群体
(西班牙裔或黑色)。此外,来自粗糙社区和较低社会经济背景的个人是
从事STEM职业和研究数据科学的可能性较小。我们假设为学生提供
课程专注于使用人群级的大数据进行社区健康需求评估,计划,
分析,评估和应用将提高学生对科学和大型重要性的理解
超越实验室或教室的数据。我们设想这样的计划将通过制作科学来吸引学生
更适用。解决文献中的差距以及缺乏实用工具来教学学生如何
使用和应用基于人群的大数据,我们将针对我们的新SEPA实现以下特定目标
程序,数据侦探:使用实际数据解决实际社区健康问题:1)实施
小说,基于问题的,经验丰富的学习课程,教导不足的中学生
科学和数学内容和数据科学原则,直接应用于社区的健康
问题; 2)通过衡量学生知识,吸引力,自我的衡量标准,对计划进行强有力的评估
功效,并追求未来的STEM职业; 3)准备大量分发课程
通过佐治亚州和美国。该计划将为K-12学生使用真实数据为
解决着专注于改善社区健康成果的真正问题。拟议的SEPA计划
符合三个裸体优先领域:a)教学学生使用大数据灌输需要的计算和
定量技能; b)课程通过使用基于问题的学习来展示对现实世界的适用性
(PBL)挑战学生使用基于人群的数据解决真正的社区级别的卫生问题;和
c)该计划遵循强大的混合方法评估计划,以衡量定量和定性
结果。研究教育计划计划针对三个特定目标,包括
改编基于问题的学习模型;与MS NGSS对齐的详细课程;清除
识别要使用的基于人群的数据集; PBL方案的明确示例;彻底的多样性
招聘计划,可以使用一个大型的学生申请人池;并明确了专家社区的意见
合作伙伴和评估专家。传播计划将共享佐治亚州的课程和材料
美国有能力在一群中学生中评估该课程的能力,以衡量其效果
关于未来STEM职业的潜力,然后最终在全国范围内将其传播给学校和非正式科学
教育计划有能力以新的和重要的方式影响K-12教育方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
THERESA W GILLESPIE其他文献
THERESA W GILLESPIE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('THERESA W GILLESPIE', 18)}}的其他基金
Curriculum Development Using Big Data for Cancer Prevention and Control
利用大数据预防和控制癌症的课程开发
- 批准号:
10672276 - 财政年份:2022
- 资助金额:
$ 27万 - 项目类别:
Experiental Citizen Science Training for the Next Generation
下一代体验式公民科学培训
- 批准号:
9096598 - 财政年份:2016
- 资助金额:
$ 27万 - 项目类别:
Experiental Citizen Science Training for the Next Generation
下一代体验式公民科学培训
- 批准号:
9754195 - 财政年份:2016
- 资助金额:
$ 27万 - 项目类别:
eCoach: Development and pilot testing of a decision aid for prostate cancer
eCoach:前列腺癌决策辅助的开发和试点测试
- 批准号:
8545133 - 财政年份:2012
- 资助金额:
$ 27万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
The contribution of air pollution to racial and ethnic disparities in Alzheimer’s disease and related dementias: An application of causal inference methods
空气污染对阿尔茨海默病和相关痴呆症的种族和民族差异的影响:因果推理方法的应用
- 批准号:
10642607 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Mentoring the next generation of trainees in patient-oriented, community engaged research in obesity and health equity
指导下一代学员进行以患者为中心、社区参与的肥胖和健康公平研究
- 批准号:
10662072 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Development and implementation of a digital sleep intervention for preschoolers in foster care
为寄养中的学龄前儿童开发和实施数字睡眠干预
- 批准号:
10724304 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Rigorous Research Principles for Practicing Neuroscientists
神经科学家的严格研究原则
- 批准号:
10721722 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Big Data Analytics Emerging Scholar (e-Scholar) Program for Minority Students
少数民族学生大数据分析新兴学者(e-Scholar)计划
- 批准号:
10554786 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别: