Unlocking sequence-structure-function-disease relationships in large protein super-families

解锁大型蛋白质超家族中的序列-结构-功能-疾病关系

基本信息

  • 批准号:
    10793016
  • 负责人:
  • 金额:
    $ 13.77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-02-01 至 2026-01-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY (unchanged) Predicting disease phenotypes from genotypes is a grand challenge in biology and personalized medicine. Our long-term goal is to address this challenge using a combination of computational and experimental approaches. Working towards this goal, we have developed and deployed a powerful evolutionary systems approach to map the complex relationships connecting sequence, structure, function, regulation and disease in biomedically important protein super-families such as protein kinases. We have made important contributions describing the unique modes of allosteric regulation in various protein kinases, deciphering the structural basis of oncogenic activation in a subset of receptor tyrosine kinases, uncovering the regulation of pseudokinases, and developing new tools and resources for addressing data integration challenges in the signaling field. We propose to build on these impactful studies to answer key questions emanating from our ongoing studies such as: What are the functions of pseudokinases, the catalytically- inert members of the kinome, and how can we use pseudokinases to better predict and characterize non-catalytic functions of kinases? What are the functions of conserved cysteine residues in regulatory sites of protein and small molecule kinases and are they post-translationally modified in redox signaling and oxidative stress response that are causally associated with age-related disorders? How can we enhance existing computational models for predicting genome-phenome relationships using structural information, and can machine learning on structurally enhanced knowledge graphs reveal new relationships between patient-derived mutations and disease phenotypes? We propose to answer these questions using a variety of approaches including statistical mining of large sequence datasets, molecular dynamics simulations, machine learning, mass spectrometry, biochemical analysis and in vivo assays. Completion of this work is expected to reveal new allosteric sites for targeting pseudokinase and kinase non- catalytic functions in diseases, and significantly advance our understanding of kinase regulatory mechanisms in disease and normal states. Our work will create new tools and resources for knowledge graph mining and provide explainable models for inferring causal relationships linking genomes and phenomes with potential applications in personalized medicine. Finally, the scope and impact of our work will be significantly broadened by participation in studies extending our specialized tools and technological approaches developed for the study of kinases to other biomedically important gene families such as glycosyltransferases and sulfotransferases.
项目摘要(未变更) 从基因型预测疾病表型是生物学中的一个巨大挑战, 个性化医疗我们的长期目标是利用 计算和实验方法的结合。为实现这一目标, 我们已经开发并部署了一个强大的进化系统方法来绘制 连接序列、结构、功能、调节和疾病的复杂关系 在生物医学上重要的蛋白质超家族中,例如蛋白激酶。我们取得了 重要的贡献,描述了不同的别构调节的独特模式, 蛋白激酶,破译致癌激活的结构基础,在一个子集, 受体酪氨酸激酶,揭示假激酶的调节, 新的工具和资源,用于解决信令领域的数据集成挑战。 我们建议在这些有影响力的研究的基础上,回答以下问题: 我们正在进行的研究,如:什么是假激酶的功能,催化- 激酶组的惰性成员,以及我们如何使用假激酶来更好地预测和 表征激酶的非催化功能?保守的功能是什么 蛋白质和小分子激酶调节位点的半胱氨酸残基, 在氧化还原信号传导和氧化应激反应中的后修饰, 与年龄相关疾病有因果关系吗如何提高现有 使用结构预测基因组-表型组关系的计算模型 信息,以及在结构增强的知识图上的机器学习能否揭示 患者源性突变和疾病表型之间的新关系?我们 我建议用各种方法来回答这些问题,包括统计学方法。 大型序列数据集的挖掘,分子动力学模拟,机器学习, 质谱、生化分析和体内测定。完成这项工作是 有望揭示新的变构位点,靶向假激酶和激酶非 催化功能的疾病,并显着推进我们的理解激酶 疾病和正常状态下的调节机制。我们的工作将创造新的工具, 用于知识图挖掘的资源并提供可解释的推理模型 基因组和表型之间的因果关系, 个性化医疗最后,我们工作的范围和影响将显著扩大, 通过参与研究扩展我们的专业工具和技术 为研究其他生物医学重要基因的激酶而开发的方法 如糖基转移酶和磺基转移酶家族。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An allosteric switch between the activation loop and a c-terminal palindromic phospho-motif controls c-Src function.
  • DOI:
    10.1038/s41467-023-41890-7
  • 发表时间:
    2023-10-17
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Cuesta-Hernandez, Hipolito Nicolas;Contreras, Julia;Soriano-Maldonado, Pablo;Sanchez-Wandelmer, Jana;Yeung, Wayland;Martin-Hurtado, Ana;Munoz, Ines G.;Kannan, Natarajan;Llimargas, Marta;Munoz, Javier;Plaza-Menacho, Ivan
  • 通讯作者:
    Plaza-Menacho, Ivan
Alignment-free estimation of sequence conservation for identifying functional sites using protein sequence embeddings.
Phosphorylation-dependent pseudokinase domain dimerization drives full-length MLKL oligomerization.
  • DOI:
    10.1038/s41467-023-42255-w
  • 发表时间:
    2023-10-26
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Meng, Yanxiang;Garnish, Sarah E.;Davies, Katherine A.;Black, Katrina A.;Leis, Andrew P.;Horne, Christopher R.;Hildebrand, Joanne M.;Hoblos, Hanadi;Fitzgibbon, Cheree;Young, Samuel N.;Dite, Toby;Dagley, Laura F.;Venkat, Aarya;Kannan, Natarajan;Koide, Akiko;Koide, Shohei;Glukhova, Alisa;Czabotar, Peter E.;Murphy, James M.
  • 通讯作者:
    Murphy, James M.
Protein kinase inhibitor selectivity "hinges" on evolution.
蛋白激酶抑制剂的选择性“取决于”进化。
  • DOI:
    10.1016/j.str.2022.11.004
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shrestha,Safal;Bendzunas,George;Kannan,Natarajan
  • 通讯作者:
    Kannan,Natarajan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Natarajan Kannan其他文献

Natarajan Kannan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Natarajan Kannan', 18)}}的其他基金

Annotating dark ion-channel functions using evolutionary features, machine learning and knowledge graph mining
使用进化特征、机器学习和知识图挖掘注释暗离子通道函数
  • 批准号:
    10457684
  • 财政年份:
    2022
  • 资助金额:
    $ 13.77万
  • 项目类别:
Annotating dark ion-channel functions using evolutionary features, machine learning and knowledge graph mining (Kennady Boyd)
使用进化特征、机器学习和知识图挖掘注释暗离子通道函数 (Kennady Boyd)
  • 批准号:
    10809950
  • 财政年份:
    2022
  • 资助金额:
    $ 13.77万
  • 项目类别:
Annotating dark ion-channel functions using evolutionary features, machine learning and knowledge graph mining
使用进化特征、机器学习和知识图挖掘注释暗离子通道函数
  • 批准号:
    10661550
  • 财政年份:
    2022
  • 资助金额:
    $ 13.77万
  • 项目类别:
Annotating dark ion-channel functions using evolutionary features, machine learning and knowledge graph mining (Rayna Carter)
使用进化特征、机器学习和知识图挖掘注释暗离子通道函数 (Rayna Carter)
  • 批准号:
    10809931
  • 财政年份:
    2022
  • 资助金额:
    $ 13.77万
  • 项目类别:
Unlocking sequence-structure-function-disease relationships in large protein super-families
解锁大型蛋白质超家族中的序列-结构-功能-疾病关系
  • 批准号:
    10552630
  • 财政年份:
    2021
  • 资助金额:
    $ 13.77万
  • 项目类别:
Determining the scope of prenylatable protein sequences
确定可异戊二烯化的蛋白质序列的范围
  • 批准号:
    10019396
  • 财政年份:
    2019
  • 资助金额:
    $ 13.77万
  • 项目类别:
Determining the scope of prenylatable protein sequences
确定可异戊二烯化的蛋白质序列的范围
  • 批准号:
    10461733
  • 财政年份:
    2019
  • 资助金额:
    $ 13.77万
  • 项目类别:
A data analytics framework for mining the dark kinome
用于挖掘暗激酶组的数据分析框架
  • 批准号:
    9915864
  • 财政年份:
    2019
  • 资助金额:
    $ 13.77万
  • 项目类别:
Determining the scope of prenylatable protein sequences
确定可异戊二烯化的蛋白质序列的范围
  • 批准号:
    10218213
  • 财政年份:
    2019
  • 资助金额:
    $ 13.77万
  • 项目类别:
A data analytics framework for mining the dark kinome
用于挖掘暗激酶组的数据分析框架
  • 批准号:
    10348826
  • 财政年份:
    2019
  • 资助金额:
    $ 13.77万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 13.77万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 13.77万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 13.77万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 13.77万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 13.77万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 13.77万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 13.77万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 13.77万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 13.77万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 13.77万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了