AI-Powered Learning: Increasing User Retention and Productivity Through Personalised Learning Paths
人工智能驱动的学习:通过个性化学习路径提高用户保留率和生产力
基本信息
- 批准号:10079009
- 负责人:
- 金额:$ 6.37万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Collaborative R&D
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The recent innovations in Artificial Intelligence have sent disrupting waves across all industries, and across the Education sector in particular. Schools around the world have banned the use of ChatGPT, fearing its impact on learning, while edtech startups embraced the opportunity to lower barriers to education. The divide between offline and online learning grows stronger, and schools and higher education are forced to offer hybrid approaches to learning.Knowledge has become a commodity. To remain relevant and economically competitive, learning institutions need to adapt, and refocus their pedagogical approach not on the knowledge itself, but on its delivery mechanisms, such that students will thrive in their learning, be supported when encountering difficulties and be enticed to continuously learn.This project is led by Music Hackspace, an online learning platform for music technologies, and the Creative Computing Institute of University of the Arts London. It focuses on studying the feasibility of personalised learning journeys, using an existing repository of over 300 on-demand courses created by Music Hackspace between 2020 and 2023\. The project will analyse the transcripts of Music Hackspace courses to help students discover new content and decide what to study, with a conversational tool that offers bespoke advice based on student needs and contexts.Both teams have collaborated on a IUK grant in 2021, to build a Machine Learning powered engine to rank courses by complexity. This project is a continuation of the successful research started then, but which didn't use large language models. The teams have an existing codebase and prototype, a clear IP strategy, and are used to working together.This project leverages three key components: (1) the world-class Machine Learning and music technology expertise of Prof Rebecca Fiebrink's team, (2) the experience of teaching online and in-person of academics and professionals, (3) a thriving startup ideally positioned to integrate the results of this research to gain traction and market share.Statista estimates the global e-learning market to grow CAGR 9.84%(2023:£133B,2027:£191B), while the global music e-learning segment grows twice as fast (2023: £174M,2027:£341M/CAGR:18.40%, Research&Markets), highlighting an urgent need to bolster the UK position in this rapidly growing sector. Machine Learning is key to differentiating innovation in this space. Successful completion of this project is projected to increase MHS's revenue by 62% over its current forecast, underscoring the transformative potential of AI in education.
人工智能领域最近的创新已经在所有行业,特别是在教育领域掀起了颠覆性的浪潮。世界各地的学校已经禁止使用ChatGPT,担心它对学习的影响,而教育科技初创公司则抓住了降低教育障碍的机会。离线和在线学习之间的鸿沟越来越大,学校和高等教育被迫提供混合学习方法。知识已经成为一种商品。为了保持相关性和经济竞争力,学习机构需要调整和重新关注其教学方法,而不是知识本身,而是其交付机制,以便学生在学习中茁壮成长,遇到困难时得到支持,并被吸引继续学习。该项目由音乐技术在线学习平台Music Hackspace领导,和伦敦艺术大学创意计算研究所。它专注于研究个性化学习之旅的可行性,使用Music Hackspace在2020年至2023年期间创建的300多个点播课程的现有资源库。该项目将分析Music Hackspace课程的成绩单,帮助学生发现新内容并决定学习什么,并提供基于学生需求和背景的定制建议的对话工具。两个团队在2021年合作获得IUK资助,以构建一个机器学习引擎,按复杂性对课程进行排名。该项目是当时开始的成功研究的延续,但没有使用大型语言模型。这些团队有一个现有的代码库和原型,一个明确的IP策略,并习惯于一起工作。这个项目利用了三个关键组件:(1)Rebecca Fiebrink教授团队的世界级机器学习和音乐技术专业知识,(2)学者和专业人士的在线教学和面对面教学经验,(3)一个蓬勃发展的创业公司,理想地整合这项研究的结果,以获得牵引力和市场份额。Statista估计,全球电子学习市场的年复合增长率为9.84%(2023年:1330亿英镑,2027年:1910亿英镑),而全球音乐电子学习领域的增长速度是其两倍(2023年:1.74亿英镑,2027年:3.41亿英镑/复合年增长率:18.40%,研究与市场),这突显出迫切需要加强英国在这个快速增长的行业中的地位。机器学习是在这个领域实现差异化创新的关键。该项目的成功完成预计将使MHS的收入比目前的预测增加62%,这突出了人工智能在教育领域的变革潜力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
$ 6.37万 - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
$ 6.37万 - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
$ 6.37万 - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
$ 6.37万 - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
$ 6.37万 - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
$ 6.37万 - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
$ 6.37万 - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
$ 6.37万 - 项目类别:
Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
- 批准号:
2879865 - 财政年份:2027
- 资助金额:
$ 6.37万 - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
$ 6.37万 - 项目类别:
Studentship
相似海外基金
Evolving Telecoms scope 3 decarbonisation: an open-access emissions datasource powered by Vision Machine Learning
不断发展的电信范围 3 脱碳:由视觉机器学习提供支持的开放获取排放数据源
- 批准号:
10111834 - 财政年份:2024
- 资助金额:
$ 6.37万 - 项目类别:
Collaborative R&D
Creating an All-optical, Mechanobiology-guided, and Machine-learning-powered High-throughput Framework to Elucidate Neural Dynamics
创建全光学、机械生物学引导和机器学习驱动的高通量框架来阐明神经动力学
- 批准号:
2308574 - 财政年份:2023
- 资助金额:
$ 6.37万 - 项目类别:
Standard Grant
DataSim: A Machine Learning-powered simulation tool for rail timetable optimisation
DataSim:用于铁路时刻表优化的机器学习驱动的模拟工具
- 批准号:
10090014 - 财政年份:2023
- 资助金额:
$ 6.37万 - 项目类别:
Collaborative R&D
Crowd-Powered Machine Learning to Diagnose ASD and ADHD in Adolescents from Digital Social Interactions
众包机器学习通过数字社交互动诊断青少年 ASD 和 ADHD
- 批准号:
10682965 - 财政年份:2023
- 资助金额:
$ 6.37万 - 项目类别:
Developing AI powered virtual patients in the Mediverse that adapt to learner’s cognitive load to improve learning outcomes for healthcare professionals and medical students.
在 Mediverse 中开发人工智能驱动的虚拟患者,适应学习者的认知负荷,以改善医疗保健专业人员和医学生的学习成果。
- 批准号:
10071011 - 财政年份:2023
- 资助金额:
$ 6.37万 - 项目类别:
Collaborative R&D
EAGER: Quantum Manufacturing: Machine learning-powered deterministic nanoassembly of ultrafast quantum photonic devices
EAGER:量子制造:机器学习驱动的超快量子光子器件的确定性纳米组装
- 批准号:
2240621 - 财政年份:2023
- 资助金额:
$ 6.37万 - 项目类别:
Standard Grant
Machine learning powered tooling for analysing climate alignment in the financial industry
用于分析金融行业气候一致性的机器学习驱动工具
- 批准号:
10031857 - 财政年份:2022
- 资助金额:
$ 6.37万 - 项目类别:
Small Business Research Initiative
Research on the Impact of VR-powered English Teaching on Japanese Learners' Self-Efficacy and Learning Outcomes
VR英语教学对日语学习者自我效能感和学习成果的影响研究
- 批准号:
22K13756 - 财政年份:2022
- 资助金额:
$ 6.37万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
An App That Uses Combined ML-Powered Independent Learning and Physical Literacy Pathways to Effectively Boost Student Productivity, Focus, and Exam Results
一款结合使用 ML 支持的独立学习和体育素养途径来有效提高学生生产力、注意力和考试成绩的应用程序
- 批准号:
10023397 - 财政年份:2022
- 资助金额:
$ 6.37万 - 项目类别:
Collaborative R&D
Personalised AI/Machine Learning powered Wellbeing Coach
个性化人工智能/机器学习驱动的健康教练
- 批准号:
10046986 - 财政年份:2022
- 资助金额:
$ 6.37万 - 项目类别:
Grant for R&D