Psychosis Risk Evaluation, Data Integration and Computational Technologies (PREDICT): Data Processing, Analysis, and Coordination Center

精神病风险评估、数据集成和计算技术 (PREDICT):数据处理、分析和协调中心

基本信息

  • 批准号:
    10457174
  • 负责人:
  • 金额:
    $ 77.74万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-09 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

The “clinical high risk” (CHR) for psychosis syndrome is an antecedent period characterized by attenuated psychotic symptoms marked by subtle deviations from normal development in thinking, motivation, affect, behavior, and a decline in functioning. Early intervention in this population is critical to prevent psychosis onset as well as other adverse outcomes. However, the presentation of symptoms and subsequent course is highly variable, and there is a paucity of biomarkers to guide treatment development. To improve clinically relevant predictive models, several issues need to be addressed: 1) to focus on outcomes beyond psychosis; 2) to take into account heterogeneity in samples and outcomes; and 3) to integrate data sets with a broad array of variables using innovative algorithms. To address these challenges, the Accelerated Medicines Partnership Schizophrenia (AMP SCZ) study will collect diverse multi-modal data via two research networks (PRESCIENT and ProNET – 42 acquisition sites) in conjunction with the Psychosis Risk Evaluation Data Integration and Computational Technologies: Data Processing, Analysis, and Coordination Center (PREDICT-DPACC). The ultimate goal is to identify new CHR biomarkers, and CHR subtypes that will enhance future clinical trials and lead to effective new treatments. The PREDICT-DPACC is tasked with, 1) providing collaborative management, direction, data processing and coordination for the two research networks; and 2) developing and applying advanced algorithms to identify biomarkers that predict outcomes, in addition to stratifying CHR into subtypes based on outcome trajectories. The PREDICT-DPACC team will include multiple data types and will address the needs of the CHR research networks and the overall AMP SCZ goals. Data will be rapidly obtained, processed, and uploaded to the NIMH Data Archive (NDA). Planned analysis methods will be powerful and robust, leveraging the expertise and experience of computer scientist developers, and experienced clinical researchers. This supplement will allow the PREDICT-DPACC team to address unexpected personnel effort needs to meet the goals set forth in the original grant submission, including, but not limited to, 1) two networks with separate and independent data capture systems that need separate development of software tools to aggregate data, which involves twice the effort to install, test, and deploy tools on their infrastructure for each network; 2) coordination with both networks to ensure that the forms and data dictionaries match across networks and with the NIMH National Data Archive; 3) the study dashboard needs to be customized further to meet the visualization needs of both networks; 4) the inclusion of additional healthy controls, and co-enrollment requirements also deviate from what was expected and complicates the proposed analytic approaches; 5) there is also participation in additional unexpected organizational activities such as team workgroups, which will continue and are needed to harmonize ideas, methods, and approaches to meet AMP SCZ goals. The supplement will fill in gaps that could not have been anticipated at the start of this study and will allow us to meet the scientific goals which have not changed.
精神病综合征的“临床高危期”(CHR)是一个以症状减弱为特征的前期

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rene S. Kahn其他文献

P582. Local and Global Brain Ageing in Cognitive Subgroups of Early Psychosis
  • DOI:
    10.1016/j.biopsych.2022.02.819
  • 发表时间:
    2022-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Shalaila Haas;Ruiyang Ge;Nicole Sanford;Amirhossein Modabbernia;Abraham Reichenberg;Heather Whalley;Rene S. Kahn;Sophia Frangou
  • 通讯作者:
    Sophia Frangou
Poster #162 DISTURBED SELF-AGENCY IN SCHIZOPHRENIA DUE TO ABNORMAL IMPLICIT (BUT NOT EXPLICIT) PROCESSING OF ACTION-OUTCOME INFORMATION
  • DOI:
    10.1016/s0920-9964(12)70734-x
  • 发表时间:
    2012-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Robert A. Renes;Lisanne Vermeulen;Rene S. Kahn;Henk Aarts;Neeltje E. van Haren
  • 通讯作者:
    Neeltje E. van Haren
Two Neuroanatomical Subtypes of Schizophrenia Defined by Multi-Site Machine Learning
  • DOI:
    10.1016/j.biopsych.2020.02.097
  • 发表时间:
    2020-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Daniel Wolf;Ganesh Chand;Dominic Dwyer;Guray Erus;Aristeidis Sotiras;Erdem Varol;Dhivya Srinivasan;Jimit Doshi;Raymond Pomponio;Alessandro Pigoni;Paola Dazzan;Rene S. Kahn;Hugo G. Schnack;Marcus V. Zanetti;Eva Meisenzahl;Geraldo F. Busatto;Benedicto Crespo-Facorro;Christos Pantelis;Stephen Wood;Chuanjun Zhuo
  • 通讯作者:
    Chuanjun Zhuo
Three Distinct Neuroanatomical Subtypes of Autism Spectrum Disorder, Revealed via Machine Learning, and Their Similarities With Schizophrenia Subtypes
  • DOI:
    10.1016/j.biopsych.2021.02.931
  • 发表时间:
    2021-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Gyujoon Hwang;Edward S. Brodkin;Ganesh B. Chand;Dominic B. Dwyer;Junhao Wen;Guray Erus;Jimit Doshi;Dhivya Srinivasan;Erdem Varol;Aristeidis Sotiras;Paola Dazzan;Rene S. Kahn;Hugo G. Schnack;Marcus V. Zanetti;Eva Meisenzahl;Geraldo F. Busatto;Benedicto Crespo-Facorro;Christos Pantelis;Stephen J. Wood;Chuanjun Zhuo
  • 通讯作者:
    Chuanjun Zhuo
Poster #53 CORTICAL THICKNESS AND CORTICAL SURFACE IN SCHIZOPHRENIA: TWO DISTINCT BUT RELEVANT PROCESSES?
  • DOI:
    10.1016/s0920-9964(12)70886-1
  • 发表时间:
    2012-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Neeltje E. van Haren;Hugo G. Schnack;Wiepke Cahn;Hilleke E. Hulshoff Pol;Rene S. Kahn
  • 通讯作者:
    Rene S. Kahn

Rene S. Kahn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rene S. Kahn', 18)}}的其他基金

Training the next generation of clinical neuroscientists
培训下一代临床神经科学家
  • 批准号:
    10390467
  • 财政年份:
    2020
  • 资助金额:
    $ 77.74万
  • 项目类别:
Psychosis Risk Evaluation, Data Integration and Computational Technologies (PREDICT): Data Processing, Analysis, and Coordination Center
精神病风险评估、数据集成和计算技术 (PREDICT):数据处理、分析和协调中心
  • 批准号:
    10409839
  • 财政年份:
    2020
  • 资助金额:
    $ 77.74万
  • 项目类别:
Training the next generation of clinical neuroscientists
培训下一代临床神经科学家
  • 批准号:
    10649573
  • 财政年份:
    2020
  • 资助金额:
    $ 77.74万
  • 项目类别:
Psychosis Risk Evaluation, Data Integration and Computational Technologies (PREDICT): Data Processing, Analysis, and Coordination Center
精神病风险评估、数据集成和计算技术 (PREDICT):数据处理、分析和协调中心
  • 批准号:
    10092398
  • 财政年份:
    2020
  • 资助金额:
    $ 77.74万
  • 项目类别:
Psychosis Risk Evaluation, Data Integration and Computational Technologies (PREDICT): Data Processing, Analysis, and Coordination Center
精神病风险评估、数据集成和计算技术 (PREDICT):数据处理、分析和协调中心
  • 批准号:
    10912925
  • 财政年份:
    2020
  • 资助金额:
    $ 77.74万
  • 项目类别:
Psychosis Risk Evaluation, Data Integration and Computational Technologies (PREDICT): Data Processing, Analysis, and Coordination Center
精神病风险评估、数据集成和计算技术 (PREDICT):数据处理、分析和协调中心
  • 批准号:
    10621232
  • 财政年份:
    2020
  • 资助金额:
    $ 77.74万
  • 项目类别:
Psychosis Risk Evaluation, Data Integration and Computational Technologies (PREDICT): Data Processing, Analysis, and Coordination Center
精神病风险评估、数据集成和计算技术 (PREDICT):数据处理、分析和协调中心
  • 批准号:
    10256796
  • 财政年份:
    2020
  • 资助金额:
    $ 77.74万
  • 项目类别:

相似海外基金

RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 77.74万
  • 项目类别:
    Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 77.74万
  • 项目类别:
    Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 77.74万
  • 项目类别:
    Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 77.74万
  • 项目类别:
    Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 77.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 77.74万
  • 项目类别:
    Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 77.74万
  • 项目类别:
    Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
  • 批准号:
    2301846
  • 财政年份:
    2023
  • 资助金额:
    $ 77.74万
  • 项目类别:
    Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 77.74万
  • 项目类别:
    Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
  • 批准号:
    23K16076
  • 财政年份:
    2023
  • 资助金额:
    $ 77.74万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了