Psychosis Risk Evaluation, Data Integration and Computational Technologies (PREDICT): Data Processing, Analysis, and Coordination Center
精神病风险评估、数据集成和计算技术 (PREDICT):数据处理、分析和协调中心
基本信息
- 批准号:10457174
- 负责人:
- 金额:$ 77.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-09 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAlgorithmsAnxiety DisordersAttenuatedBehaviorBig DataBiological MarkersClinicalClinical TrialsCollectionCommon Data ElementComputer softwareComputersCustomDataData AggregationData AnalysesData SetDevelopmentDiseaseEarly InterventionEarly identificationEnrollmentEnsureEvaluationFAIR principlesFundingFutureGoalsGrantHeterogeneityHuman ResourcesImpaired cognitionIndividualInformaticsInfrastructureInterventionLeadMachine LearningMedicineMental disordersMethodsModificationMonitorMoodsMotivationNational Institute of Mental HealthOutcomeParentsPharmacotherapyPopulationPopulation HeterogeneityPrivatizationProceduresProcessProtocols documentationPsychosesQuality ControlRecoveryResearchResearch PersonnelRiskSafetySamplingSchizophreniaScientistSecureSiteSoftware ToolsStandardizationSubstance Use DisorderSymptomsSystemTechnologyTestingThinkingTimeTrainingTransactTravelValidationVisualizationVisualization softwareWorkadverse outcomeanalytical toolattenuated psychosis syndromebarrier to carebasebioinformatics infrastructurecandidate markerclinical heterogeneityclinical riskclinically relevantcloud basedcomputer sciencecomputerized data processingdashboarddata archivedata de-identificationdata dictionarydata harmonizationdata infrastructuredata integrationdata toolsdemographicsdesigndisabilitydrug developmenteffective interventioneffective therapyexperiencefunctional declinefunctional disabilityhigh riskimprovedindividualized medicineinnovationmultidisciplinarymultimodal datamultimodalitymultiple data typesnovel markeroutcome predictionpredictive markerpredictive modelingpreventprospectivepsychotic symptomsquality assurancerecruitresearch studyresilienceresponserisk prediction modelrisk stratificationsoftware developmenttargeted treatmenttherapy developmenttoolweb based interfaceweb site
项目摘要
The “clinical high risk” (CHR) for psychosis syndrome is an antecedent period characterized by attenuated
psychotic symptoms marked by subtle deviations from normal development in thinking, motivation, affect,
behavior, and a decline in functioning. Early intervention in this population is critical to prevent psychosis onset
as well as other adverse outcomes. However, the presentation of symptoms and subsequent course is highly
variable, and there is a paucity of biomarkers to guide treatment development. To improve clinically relevant
predictive models, several issues need to be addressed: 1) to focus on outcomes beyond psychosis; 2) to take
into account heterogeneity in samples and outcomes; and 3) to integrate data sets with a broad array of variables
using innovative algorithms. To address these challenges, the Accelerated Medicines Partnership Schizophrenia
(AMP SCZ) study will collect diverse multi-modal data via two research networks (PRESCIENT and ProNET –
42 acquisition sites) in conjunction with the Psychosis Risk Evaluation Data Integration and Computational
Technologies: Data Processing, Analysis, and Coordination Center (PREDICT-DPACC). The ultimate goal is to
identify new CHR biomarkers, and CHR subtypes that will enhance future clinical trials and lead to effective new
treatments. The PREDICT-DPACC is tasked with, 1) providing collaborative management, direction, data
processing and coordination for the two research networks; and 2) developing and applying advanced algorithms
to identify biomarkers that predict outcomes, in addition to stratifying CHR into subtypes based on outcome
trajectories. The PREDICT-DPACC team will include multiple data types and will address the needs of the CHR
research networks and the overall AMP SCZ goals. Data will be rapidly obtained, processed, and uploaded to
the NIMH Data Archive (NDA). Planned analysis methods will be powerful and robust, leveraging the expertise
and experience of computer scientist developers, and experienced clinical researchers. This supplement will
allow the PREDICT-DPACC team to address unexpected personnel effort needs to meet the goals set forth in
the original grant submission, including, but not limited to, 1) two networks with separate and independent data
capture systems that need separate development of software tools to aggregate data, which involves twice the
effort to install, test, and deploy tools on their infrastructure for each network; 2) coordination with both networks
to ensure that the forms and data dictionaries match across networks and with the NIMH National Data Archive;
3) the study dashboard needs to be customized further to meet the visualization needs of both networks; 4) the
inclusion of additional healthy controls, and co-enrollment requirements also deviate from what was expected
and complicates the proposed analytic approaches; 5) there is also participation in additional unexpected
organizational activities such as team workgroups, which will continue and are needed to harmonize ideas,
methods, and approaches to meet AMP SCZ goals. The supplement will fill in gaps that could not have been
anticipated at the start of this study and will allow us to meet the scientific goals which have not changed.
精神病综合征的“临床高危”(clinical high risk,缩写为CRH)是一个前期,其特征是:
以思维、动机、情感等方面与正常发展的细微偏差为特征的精神病症状,
行为和功能下降。对这一人群的早期干预对于预防精神病发作至关重要
以及其他不良后果。然而,症状的表现和随后的过程是高度
变量,并且缺乏指导治疗开发的生物标志物。改善临床相关性
预测模型,需要解决几个问题:1)关注精神病以外的结果; 2)采取
考虑到样本和结果的异质性;以及3)将数据集与广泛的变量进行整合
使用创新的算法。为了应对这些挑战,加速药物伙伴关系精神分裂症
(AMP SCZ)研究将通过两个研究网络(PRESCIENT和ProNET -
42个采集点)与精神病风险评估数据集成和计算
技术:数据处理,分析和协调中心(预测DPACC)。最终目标是
确定新的生物标志物和新的亚型,这将加强未来的临床试验,并导致有效的新的
治疗。PREDICT-DPACC的任务是:1)提供协作管理、指导、数据
两个研究网络的处理和协调; 2)开发和应用先进的算法
除了根据结果将肿瘤分为亚型外,
轨迹PREDICT-DPACC小组将包括多种数据类型,并将满足环境署的需求。
研究网络和总体AMP SCZ目标。数据将被快速获取、处理并上传到
NIMH数据档案(NDA)。计划中的分析方法将是强大而稳健的,
计算机科学家开发人员和经验丰富的临床研究人员的经验。该补充将
允许PREDICT-DPACC团队解决意外的人员工作需求,以实现
原始拨款提交,包括但不限于:1)两个网络,具有单独和独立的数据
捕获需要单独开发软件工具来汇总数据的系统,这涉及两倍于
努力在每个网络的基础设施上安装、测试和部署工具; 2)与两个网络协调
确保表格和数据字典在网络上匹配,并与NIMH国家数据档案库相匹配;
3)研究仪表板需要进一步定制,以满足两个网络的可视化需求; 4)
纳入额外的健康对照和共同入组要求也偏离了预期
并使所提出的分析方法复杂化; 5)还参与了额外的意外
组织活动,如团队工作组,将继续进行,并需要协调想法,
方法和途径,以满足AMP SCZ的目标。补充将填补空白,
这是本研究开始时的预期,将使我们能够实现尚未改变的科学目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rene S. Kahn其他文献
P582. Local and Global Brain Ageing in Cognitive Subgroups of Early Psychosis
- DOI:
10.1016/j.biopsych.2022.02.819 - 发表时间:
2022-05-01 - 期刊:
- 影响因子:
- 作者:
Shalaila Haas;Ruiyang Ge;Nicole Sanford;Amirhossein Modabbernia;Abraham Reichenberg;Heather Whalley;Rene S. Kahn;Sophia Frangou - 通讯作者:
Sophia Frangou
Poster #162 DISTURBED SELF-AGENCY IN SCHIZOPHRENIA DUE TO ABNORMAL IMPLICIT (BUT NOT EXPLICIT) PROCESSING OF ACTION-OUTCOME INFORMATION
- DOI:
10.1016/s0920-9964(12)70734-x - 发表时间:
2012-04-01 - 期刊:
- 影响因子:
- 作者:
Robert A. Renes;Lisanne Vermeulen;Rene S. Kahn;Henk Aarts;Neeltje E. van Haren - 通讯作者:
Neeltje E. van Haren
Two Neuroanatomical Subtypes of Schizophrenia Defined by Multi-Site Machine Learning
- DOI:
10.1016/j.biopsych.2020.02.097 - 发表时间:
2020-05-01 - 期刊:
- 影响因子:
- 作者:
Daniel Wolf;Ganesh Chand;Dominic Dwyer;Guray Erus;Aristeidis Sotiras;Erdem Varol;Dhivya Srinivasan;Jimit Doshi;Raymond Pomponio;Alessandro Pigoni;Paola Dazzan;Rene S. Kahn;Hugo G. Schnack;Marcus V. Zanetti;Eva Meisenzahl;Geraldo F. Busatto;Benedicto Crespo-Facorro;Christos Pantelis;Stephen Wood;Chuanjun Zhuo - 通讯作者:
Chuanjun Zhuo
Three Distinct Neuroanatomical Subtypes of Autism Spectrum Disorder, Revealed via Machine Learning, and Their Similarities With Schizophrenia Subtypes
- DOI:
10.1016/j.biopsych.2021.02.931 - 发表时间:
2021-05-01 - 期刊:
- 影响因子:
- 作者:
Gyujoon Hwang;Edward S. Brodkin;Ganesh B. Chand;Dominic B. Dwyer;Junhao Wen;Guray Erus;Jimit Doshi;Dhivya Srinivasan;Erdem Varol;Aristeidis Sotiras;Paola Dazzan;Rene S. Kahn;Hugo G. Schnack;Marcus V. Zanetti;Eva Meisenzahl;Geraldo F. Busatto;Benedicto Crespo-Facorro;Christos Pantelis;Stephen J. Wood;Chuanjun Zhuo - 通讯作者:
Chuanjun Zhuo
Poster #53 CORTICAL THICKNESS AND CORTICAL SURFACE IN SCHIZOPHRENIA: TWO DISTINCT BUT RELEVANT PROCESSES?
- DOI:
10.1016/s0920-9964(12)70886-1 - 发表时间:
2012-04-01 - 期刊:
- 影响因子:
- 作者:
Neeltje E. van Haren;Hugo G. Schnack;Wiepke Cahn;Hilleke E. Hulshoff Pol;Rene S. Kahn - 通讯作者:
Rene S. Kahn
Rene S. Kahn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rene S. Kahn', 18)}}的其他基金
Training the next generation of clinical neuroscientists
培训下一代临床神经科学家
- 批准号:
10390467 - 财政年份:2020
- 资助金额:
$ 77.74万 - 项目类别:
Psychosis Risk Evaluation, Data Integration and Computational Technologies (PREDICT): Data Processing, Analysis, and Coordination Center
精神病风险评估、数据集成和计算技术 (PREDICT):数据处理、分析和协调中心
- 批准号:
10409839 - 财政年份:2020
- 资助金额:
$ 77.74万 - 项目类别:
Training the next generation of clinical neuroscientists
培训下一代临床神经科学家
- 批准号:
10649573 - 财政年份:2020
- 资助金额:
$ 77.74万 - 项目类别:
Psychosis Risk Evaluation, Data Integration and Computational Technologies (PREDICT): Data Processing, Analysis, and Coordination Center
精神病风险评估、数据集成和计算技术 (PREDICT):数据处理、分析和协调中心
- 批准号:
10092398 - 财政年份:2020
- 资助金额:
$ 77.74万 - 项目类别:
Psychosis Risk Evaluation, Data Integration and Computational Technologies (PREDICT): Data Processing, Analysis, and Coordination Center
精神病风险评估、数据集成和计算技术 (PREDICT):数据处理、分析和协调中心
- 批准号:
10912925 - 财政年份:2020
- 资助金额:
$ 77.74万 - 项目类别:
Psychosis Risk Evaluation, Data Integration and Computational Technologies (PREDICT): Data Processing, Analysis, and Coordination Center
精神病风险评估、数据集成和计算技术 (PREDICT):数据处理、分析和协调中心
- 批准号:
10621232 - 财政年份:2020
- 资助金额:
$ 77.74万 - 项目类别:
Psychosis Risk Evaluation, Data Integration and Computational Technologies (PREDICT): Data Processing, Analysis, and Coordination Center
精神病风险评估、数据集成和计算技术 (PREDICT):数据处理、分析和协调中心
- 批准号:
10256796 - 财政年份:2020
- 资助金额:
$ 77.74万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 77.74万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 77.74万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 77.74万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 77.74万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 77.74万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 77.74万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 77.74万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 77.74万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 77.74万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 77.74万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




