Psychosis Risk Evaluation, Data Integration and Computational Technologies (PREDICT): Data Processing, Analysis, and Coordination Center

精神病风险评估、数据集成和计算技术 (PREDICT):数据处理、分析和协调中心

基本信息

  • 批准号:
    10457174
  • 负责人:
  • 金额:
    $ 77.74万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-09 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

The “clinical high risk” (CHR) for psychosis syndrome is an antecedent period characterized by attenuated psychotic symptoms marked by subtle deviations from normal development in thinking, motivation, affect, behavior, and a decline in functioning. Early intervention in this population is critical to prevent psychosis onset as well as other adverse outcomes. However, the presentation of symptoms and subsequent course is highly variable, and there is a paucity of biomarkers to guide treatment development. To improve clinically relevant predictive models, several issues need to be addressed: 1) to focus on outcomes beyond psychosis; 2) to take into account heterogeneity in samples and outcomes; and 3) to integrate data sets with a broad array of variables using innovative algorithms. To address these challenges, the Accelerated Medicines Partnership Schizophrenia (AMP SCZ) study will collect diverse multi-modal data via two research networks (PRESCIENT and ProNET – 42 acquisition sites) in conjunction with the Psychosis Risk Evaluation Data Integration and Computational Technologies: Data Processing, Analysis, and Coordination Center (PREDICT-DPACC). The ultimate goal is to identify new CHR biomarkers, and CHR subtypes that will enhance future clinical trials and lead to effective new treatments. The PREDICT-DPACC is tasked with, 1) providing collaborative management, direction, data processing and coordination for the two research networks; and 2) developing and applying advanced algorithms to identify biomarkers that predict outcomes, in addition to stratifying CHR into subtypes based on outcome trajectories. The PREDICT-DPACC team will include multiple data types and will address the needs of the CHR research networks and the overall AMP SCZ goals. Data will be rapidly obtained, processed, and uploaded to the NIMH Data Archive (NDA). Planned analysis methods will be powerful and robust, leveraging the expertise and experience of computer scientist developers, and experienced clinical researchers. This supplement will allow the PREDICT-DPACC team to address unexpected personnel effort needs to meet the goals set forth in the original grant submission, including, but not limited to, 1) two networks with separate and independent data capture systems that need separate development of software tools to aggregate data, which involves twice the effort to install, test, and deploy tools on their infrastructure for each network; 2) coordination with both networks to ensure that the forms and data dictionaries match across networks and with the NIMH National Data Archive; 3) the study dashboard needs to be customized further to meet the visualization needs of both networks; 4) the inclusion of additional healthy controls, and co-enrollment requirements also deviate from what was expected and complicates the proposed analytic approaches; 5) there is also participation in additional unexpected organizational activities such as team workgroups, which will continue and are needed to harmonize ideas, methods, and approaches to meet AMP SCZ goals. The supplement will fill in gaps that could not have been anticipated at the start of this study and will allow us to meet the scientific goals which have not changed.
精神病综合征的“临床高风险”(CHR)是一个前期,其特征是衰减 在思维,动机,情感中,与正常发展相比,精神病符号的标志是 行为和功能下降。对该人群的早期干预对于预防精神病至关重要 以及其他不利结果。但是,症状的表现和随后的过程高度高 可变,并且生物标志物缺乏指导治疗发展。改善临床相关 预测模型,需要解决几个问题:1)专注于精神病以外的结果; 2) 考虑到样品和结果的异质性; 3)将数据集与大量变量集成 使用创新算法。为了应对这些挑战,加速的药物伙伴关系精神分裂症 (AMP SCZ)研究将通过两个研究网络(Prescient和Pronet - 42采集站点)结合精神病风险评估数据整合和计算 技术:数据处理,分析和协调中心(预测DPACC)。最终目标是 识别新的CHR生物标志物和CHR亚型,可增强未来的临床试验并导致有效的新试验 治疗。预测DPACC的任务是1)提供协作管理,指导,数据 两个研究网络的处理和协调; 2)开发和应用高级算法 除了根据结果将CHR分层为亚型外,还可以识别预测结果的生物标志物 轨迹。预测DPACC团队将包括多种数据类型,并将满足CHR的需求 研究网络和整体AMP SCZ目标。数据将迅速获得,处理和上传到 NIMH数据存档(NDA)。计划分析方法将是强大而强大的,利用专业知识 以及计算机科学家开发人员以及经验丰富的临床研究人员的经验。这种补充会 允许预测DPACC团队解决意外的人员努力,以实现在 原始赠款提交,包括但不限于1)两个具有独立和独立数据的网络 捕获需要单独开发软件工具来汇总数据的系统,这涉及两倍 努力在每个网络的基础架构上安装,测试和部署工具; 2)与两个网络的协调 确保表格和数据词典跨网络以及NIMH国家数据存档匹配; 3)需要进一步定制研究仪表板,以满足两个网络的可视化需求; 4) 包括其他健康对照,共同注册的要求也偏离了预期 并使提出的分析方法复杂化; 5)也有其他意外 组织活动(例如团队工作组)将继续并需要和协调思想, 方法和实现AMP SCZ目标的方法。补充将填补不可能的空白 在本研究开始时进行了预期,将使我们能够实现没有改变的科学目标。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rene S. Kahn其他文献

P582. Local and Global Brain Ageing in Cognitive Subgroups of Early Psychosis
  • DOI:
    10.1016/j.biopsych.2022.02.819
  • 发表时间:
    2022-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Shalaila Haas;Ruiyang Ge;Nicole Sanford;Amirhossein Modabbernia;Abraham Reichenberg;Heather Whalley;Rene S. Kahn;Sophia Frangou
  • 通讯作者:
    Sophia Frangou
Two Neuroanatomical Subtypes of Schizophrenia Defined by Multi-Site Machine Learning
  • DOI:
    10.1016/j.biopsych.2020.02.097
  • 发表时间:
    2020-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Daniel Wolf;Ganesh Chand;Dominic Dwyer;Guray Erus;Aristeidis Sotiras;Erdem Varol;Dhivya Srinivasan;Jimit Doshi;Raymond Pomponio;Alessandro Pigoni;Paola Dazzan;Rene S. Kahn;Hugo G. Schnack;Marcus V. Zanetti;Eva Meisenzahl;Geraldo F. Busatto;Benedicto Crespo-Facorro;Christos Pantelis;Stephen Wood;Chuanjun Zhuo
  • 通讯作者:
    Chuanjun Zhuo
Poster #162 DISTURBED SELF-AGENCY IN SCHIZOPHRENIA DUE TO ABNORMAL IMPLICIT (BUT NOT EXPLICIT) PROCESSING OF ACTION-OUTCOME INFORMATION
  • DOI:
    10.1016/s0920-9964(12)70734-x
  • 发表时间:
    2012-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Robert A. Renes;Lisanne Vermeulen;Rene S. Kahn;Henk Aarts;Neeltje E. van Haren
  • 通讯作者:
    Neeltje E. van Haren
Three Distinct Neuroanatomical Subtypes of Autism Spectrum Disorder, Revealed via Machine Learning, and Their Similarities With Schizophrenia Subtypes
  • DOI:
    10.1016/j.biopsych.2021.02.931
  • 发表时间:
    2021-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Gyujoon Hwang;Edward S. Brodkin;Ganesh B. Chand;Dominic B. Dwyer;Junhao Wen;Guray Erus;Jimit Doshi;Dhivya Srinivasan;Erdem Varol;Aristeidis Sotiras;Paola Dazzan;Rene S. Kahn;Hugo G. Schnack;Marcus V. Zanetti;Eva Meisenzahl;Geraldo F. Busatto;Benedicto Crespo-Facorro;Christos Pantelis;Stephen J. Wood;Chuanjun Zhuo
  • 通讯作者:
    Chuanjun Zhuo
Poster #53 CORTICAL THICKNESS AND CORTICAL SURFACE IN SCHIZOPHRENIA: TWO DISTINCT BUT RELEVANT PROCESSES?
  • DOI:
    10.1016/s0920-9964(12)70886-1
  • 发表时间:
    2012-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Neeltje E. van Haren;Hugo G. Schnack;Wiepke Cahn;Hilleke E. Hulshoff Pol;Rene S. Kahn
  • 通讯作者:
    Rene S. Kahn

Rene S. Kahn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rene S. Kahn', 18)}}的其他基金

Training the next generation of clinical neuroscientists
培训下一代临床神经科学家
  • 批准号:
    10390467
  • 财政年份:
    2020
  • 资助金额:
    $ 77.74万
  • 项目类别:
Psychosis Risk Evaluation, Data Integration and Computational Technologies (PREDICT): Data Processing, Analysis, and Coordination Center
精神病风险评估、数据集成和计算技术 (PREDICT):数据处理、分析和协调中心
  • 批准号:
    10409839
  • 财政年份:
    2020
  • 资助金额:
    $ 77.74万
  • 项目类别:
Training the next generation of clinical neuroscientists
培训下一代临床神经科学家
  • 批准号:
    10649573
  • 财政年份:
    2020
  • 资助金额:
    $ 77.74万
  • 项目类别:
Psychosis Risk Evaluation, Data Integration and Computational Technologies (PREDICT): Data Processing, Analysis, and Coordination Center
精神病风险评估、数据集成和计算技术 (PREDICT):数据处理、分析和协调中心
  • 批准号:
    10092398
  • 财政年份:
    2020
  • 资助金额:
    $ 77.74万
  • 项目类别:
Psychosis Risk Evaluation, Data Integration and Computational Technologies (PREDICT): Data Processing, Analysis, and Coordination Center
精神病风险评估、数据集成和计算技术 (PREDICT):数据处理、分析和协调中心
  • 批准号:
    10912925
  • 财政年份:
    2020
  • 资助金额:
    $ 77.74万
  • 项目类别:
Psychosis Risk Evaluation, Data Integration and Computational Technologies (PREDICT): Data Processing, Analysis, and Coordination Center
精神病风险评估、数据集成和计算技术 (PREDICT):数据处理、分析和协调中心
  • 批准号:
    10621232
  • 财政年份:
    2020
  • 资助金额:
    $ 77.74万
  • 项目类别:
Psychosis Risk Evaluation, Data Integration and Computational Technologies (PREDICT): Data Processing, Analysis, and Coordination Center
精神病风险评估、数据集成和计算技术 (PREDICT):数据处理、分析和协调中心
  • 批准号:
    10256796
  • 财政年份:
    2020
  • 资助金额:
    $ 77.74万
  • 项目类别:

相似国自然基金

基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
  • 批准号:
    52378011
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
社交网络上观点动力学的重要影响因素与高效算法
  • 批准号:
    62372112
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
  • 批准号:
    72372021
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
  • 批准号:
    72372070
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
算法鸿沟影响因素与作用机制研究
  • 批准号:
    72304017
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
  • 批准号:
    10462257
  • 财政年份:
    2023
  • 资助金额:
    $ 77.74万
  • 项目类别:
New Algorithms for Cryogenic Electron Microscopy
低温电子显微镜的新算法
  • 批准号:
    10543569
  • 财政年份:
    2023
  • 资助金额:
    $ 77.74万
  • 项目类别:
Move and Snooze: Adding insomnia treatment to an exercise program to improve pain outcomes in older adults with knee osteoarthritis
活动和小睡:在锻炼计划中添加失眠治疗,以改善患有膝骨关节炎的老年人的疼痛结果
  • 批准号:
    10797056
  • 财政年份:
    2023
  • 资助金额:
    $ 77.74万
  • 项目类别:
Elucidating causal mechanisms of ethanol-induced analgesia in BXD recombinant inbred mouse lines
阐明 BXD 重组近交系小鼠乙醇诱导镇痛的因果机制
  • 批准号:
    10825737
  • 财政年份:
    2023
  • 资助金额:
    $ 77.74万
  • 项目类别:
High-throughput thermodynamic and kinetic measurements for variant effects prediction in a major protein superfamily
用于预测主要蛋白质超家族变异效应的高通量热力学和动力学测量
  • 批准号:
    10752370
  • 财政年份:
    2023
  • 资助金额:
    $ 77.74万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了