Psychosis Risk Evaluation, Data Integration and Computational Technologies (PREDICT): Data Processing, Analysis, and Coordination Center
精神病风险评估、数据集成和计算技术 (PREDICT):数据处理、分析和协调中心
基本信息
- 批准号:10409839
- 负责人:
- 金额:$ 468.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-09 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdolescentAffectAlgorithmsAnxiety DisordersArtificial IntelligenceAttenuatedBehaviorBig DataBiological MarkersChildClinicalClinical TrialsCollectionCommon Data ElementCommunitiesCommunity OutreachComputer AnalysisComputer softwareComputersDataData AggregationData AnalysesData CollectionData SetDatabasesDevelopmentDiseaseDisease remissionEarly InterventionEarly identificationEnrollmentEnsureEthicsEvaluationFAIR principlesFollow-Up StudiesFundingFutureGoalsHeterogeneityHuman ResourcesImpaired cognitionIndividualInformaticsInfrastructureInstructionInterventionLeadLeadershipLongterm Follow-upMachine LearningMeasuresMental disordersMeta-AnalysisMethodsMonitorMoodsMotivationNational Institute of Mental HealthOnline SystemsOutcomeOutputPerceptionPersonsProceduresProcessProtocols documentationPsychosesQuality ControlRecoveryResearchResearch PersonnelRiskSafetySamplingSchizophreniaScientistSecureSiteSocial FunctioningStandardizationSubstance Use DisorderSuggestionSymptomsTechnologyThinkingTimeTrainingTransactUnited StatesValidationVisualization softwareadverse outcomeanalytical toolattenuated psychosis syndromebasebioinformatics infrastructurebiomarker identificationcandidate markerclinical heterogeneityclinical high risk for psychosisclinical riskclinical subtypesclinically relevantcloud basedcohortcomputerized data processingdata acquisitiondata archivedata dictionarydata disseminationdata harmonizationdata infrastructuredata integrationdata repositorydata toolsdeep learningdemographicsdesigndisabilityeffective interventionexperienceflexibilityfunctional declinefunctional disabilityhigh riskhigh risk populationimprovedinclusion criteriainnovationmeetingsmembermultidisciplinarymultimodal datamultimodalitymultiple data typesoutcome predictionpersistent symptomprediction algorithmpredictive markerpredictive modelingpreventprospectivepsychosis riskpsychotic symptomsquality assurancerecruitresearch studyresilienceresponserisk predictionrisk stratificationschizophrenia risksuccesstherapy developmenttoolworking group
项目摘要
The “clinical high risk” (CHR) for psychosis syndrome is an antecedent period characterized by attenuated
psychotic symptoms that are marked by subtle deviations from normal development in thinking, motivation,
affect, behavior, and a decline in functioning. Early intervention in this CHR population is critical to prevent
psychosis onset as well as other adverse outcomes. However, the presentation of symptoms and subsequent
course is highly variable, and there is a paucity of biomarkers to guide treatment development. Thus, to improve
predictive models that are clinically relevant, several issues need to be addressed: 1) focusing on outcomes
beyond psychosis; 2) taking into account heterogeneity in samples and outcomes; and 3) integrating data sets
with a broad array of variables using innovative algorithms to overcome variability across studies. To address
these challenges, the proposed “Psychosis Risk Evaluation Data Integration and Computational Technologies:
Data Processing, Analysis, and Coordination Center” (PREDICT-DPACC) brings together a multidisciplinary
team of highly experienced researchers with proven capabilities in all aspects of large-scale studies, CHR
studies, as well as computational expertise. The ultimate goal is to identify new CHR biomarkers, and CHR
subtypes that will enhance future clinical trials. To do so, the PREDICT-DPACC will 1) aggregate extant CHR-
related data sets from legacy datasets; 2) provide collaborative management, direction, data processing and
coordination for new U01 multisite network(s); and 3) develop and apply advanced algorithms to identify
biomarkers that predict outcomes, and to stratify CHR into subtypes based on outcome trajectories, first from
the extant data and then refined and applied to the new data. The PREDICT-DPACC team has the broad,
comprehensive, and robust infrastructure that is sufficiently flexible to accommodate the inclusion of multiple
data types and to optimally address the needs of the CHR U01 network(s). Carefully selected extant data will be
rapidly obtained, processed, and uploaded to the NIMH Data Archive (NDA). Proposed analysis methods are
powerful and robust, leveraging the expertise and experience of computer scientist developers, and experienced
clinical researchers. The U01 network(s) will be coordinated by a team that is experienced in managing large
studies, familiar with the needs of such studies, flexible, and is knowledgeable in all aspects of CHR studies,
including measures, outcomes, biomarkers, and cohorts. Upon meeting the goals of this U24, and the supported
U01 network(s), the expected outcomes of the PREDICT-DPACC will be new predictive biomarkers for CHR
outcomes, new definitions of CHR subtypes that are clinically useful, and new curated and comprehensive CHR
datasets (extant and new) as well as processing tools and prediction algorithms that are shared with the research
community through the NIMH Data Archive.
精神病综合征的“临床高危”(clinical high risk,缩写为CRH)是一个前期,其特征是:
精神病症状的特点是思维,动机,
影响行为和功能下降对这一弱势群体的早期干预对于预防
精神病发作以及其他不良后果。然而,症状的表现和随后的
过程是高度可变的,并且缺乏生物标志物来指导治疗开发。因此,为了改善
预测模型是临床相关的,需要解决几个问题:1)关注结果
超越精神病; 2)考虑样本和结果的异质性; 3)整合数据集
使用创新算法来克服研究之间的差异性,具有广泛的变量。解决
这些挑战,提出了“精神病风险评估数据集成和计算技术:
数据处理、分析和协调中心”(PREDICT-DPACC)汇集了多学科
由经验丰富的研究人员组成的团队,在大规模研究的各个方面都有成熟的能力,
研究,以及计算专业知识。最终目标是确定新的生物标志物,
这些亚型将增强未来的临床试验。为此,PREDICT-DPACC将1)聚合现有的数据,
2)提供协作管理、指导、数据处理和
协调新的U 01多站点网络;以及3)开发和应用高级算法,
生物标志物,预测结果,并分层成亚型的基础上,结果轨迹,首先从
现有的数据,然后提炼和应用到新的数据。预测DPACC团队拥有广泛的,
全面而强大的基础设施,具有足够的灵活性,可容纳多个
数据类型,并以最佳方式满足EU 01网络的需求。精心挑选的现存数据将被
快速获取、处理并上传到NIMH数据档案(NDA)。建议的分析方法有
强大而健壮,利用计算机科学家开发人员的专业知识和经验,
临床研究者U 01网络将由一个在管理大型
研究,熟悉此类研究的需求,灵活,并了解研究的各个方面,
包括测量、结果、生物标志物和群组。在实现这一U24的目标,并支持
根据U 01网络,PREDICT-DPACC的预期结果将是新的预测性生物标志物,
结果,临床上有用的新定义,以及新的策划和全面的治疗
数据集(现有的和新的)以及与研究共享的处理工具和预测算法
通过NIMH数据档案。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rene S. Kahn其他文献
P582. Local and Global Brain Ageing in Cognitive Subgroups of Early Psychosis
- DOI:
10.1016/j.biopsych.2022.02.819 - 发表时间:
2022-05-01 - 期刊:
- 影响因子:
- 作者:
Shalaila Haas;Ruiyang Ge;Nicole Sanford;Amirhossein Modabbernia;Abraham Reichenberg;Heather Whalley;Rene S. Kahn;Sophia Frangou - 通讯作者:
Sophia Frangou
Two Neuroanatomical Subtypes of Schizophrenia Defined by Multi-Site Machine Learning
- DOI:
10.1016/j.biopsych.2020.02.097 - 发表时间:
2020-05-01 - 期刊:
- 影响因子:
- 作者:
Daniel Wolf;Ganesh Chand;Dominic Dwyer;Guray Erus;Aristeidis Sotiras;Erdem Varol;Dhivya Srinivasan;Jimit Doshi;Raymond Pomponio;Alessandro Pigoni;Paola Dazzan;Rene S. Kahn;Hugo G. Schnack;Marcus V. Zanetti;Eva Meisenzahl;Geraldo F. Busatto;Benedicto Crespo-Facorro;Christos Pantelis;Stephen Wood;Chuanjun Zhuo - 通讯作者:
Chuanjun Zhuo
Poster #162 DISTURBED SELF-AGENCY IN SCHIZOPHRENIA DUE TO ABNORMAL IMPLICIT (BUT NOT EXPLICIT) PROCESSING OF ACTION-OUTCOME INFORMATION
- DOI:
10.1016/s0920-9964(12)70734-x - 发表时间:
2012-04-01 - 期刊:
- 影响因子:
- 作者:
Robert A. Renes;Lisanne Vermeulen;Rene S. Kahn;Henk Aarts;Neeltje E. van Haren - 通讯作者:
Neeltje E. van Haren
Three Distinct Neuroanatomical Subtypes of Autism Spectrum Disorder, Revealed via Machine Learning, and Their Similarities With Schizophrenia Subtypes
- DOI:
10.1016/j.biopsych.2021.02.931 - 发表时间:
2021-05-01 - 期刊:
- 影响因子:
- 作者:
Gyujoon Hwang;Edward S. Brodkin;Ganesh B. Chand;Dominic B. Dwyer;Junhao Wen;Guray Erus;Jimit Doshi;Dhivya Srinivasan;Erdem Varol;Aristeidis Sotiras;Paola Dazzan;Rene S. Kahn;Hugo G. Schnack;Marcus V. Zanetti;Eva Meisenzahl;Geraldo F. Busatto;Benedicto Crespo-Facorro;Christos Pantelis;Stephen J. Wood;Chuanjun Zhuo - 通讯作者:
Chuanjun Zhuo
Poster #53 CORTICAL THICKNESS AND CORTICAL SURFACE IN SCHIZOPHRENIA: TWO DISTINCT BUT RELEVANT PROCESSES?
- DOI:
10.1016/s0920-9964(12)70886-1 - 发表时间:
2012-04-01 - 期刊:
- 影响因子:
- 作者:
Neeltje E. van Haren;Hugo G. Schnack;Wiepke Cahn;Hilleke E. Hulshoff Pol;Rene S. Kahn - 通讯作者:
Rene S. Kahn
Rene S. Kahn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rene S. Kahn', 18)}}的其他基金
Psychosis Risk Evaluation, Data Integration and Computational Technologies (PREDICT): Data Processing, Analysis, and Coordination Center
精神病风险评估、数据集成和计算技术 (PREDICT):数据处理、分析和协调中心
- 批准号:
10457174 - 财政年份:2020
- 资助金额:
$ 468.47万 - 项目类别:
Training the next generation of clinical neuroscientists
培训下一代临床神经科学家
- 批准号:
10390467 - 财政年份:2020
- 资助金额:
$ 468.47万 - 项目类别:
Training the next generation of clinical neuroscientists
培训下一代临床神经科学家
- 批准号:
10649573 - 财政年份:2020
- 资助金额:
$ 468.47万 - 项目类别:
Psychosis Risk Evaluation, Data Integration and Computational Technologies (PREDICT): Data Processing, Analysis, and Coordination Center
精神病风险评估、数据集成和计算技术 (PREDICT):数据处理、分析和协调中心
- 批准号:
10092398 - 财政年份:2020
- 资助金额:
$ 468.47万 - 项目类别:
Psychosis Risk Evaluation, Data Integration and Computational Technologies (PREDICT): Data Processing, Analysis, and Coordination Center
精神病风险评估、数据集成和计算技术 (PREDICT):数据处理、分析和协调中心
- 批准号:
10912925 - 财政年份:2020
- 资助金额:
$ 468.47万 - 项目类别:
Psychosis Risk Evaluation, Data Integration and Computational Technologies (PREDICT): Data Processing, Analysis, and Coordination Center
精神病风险评估、数据集成和计算技术 (PREDICT):数据处理、分析和协调中心
- 批准号:
10621232 - 财政年份:2020
- 资助金额:
$ 468.47万 - 项目类别:
Psychosis Risk Evaluation, Data Integration and Computational Technologies (PREDICT): Data Processing, Analysis, and Coordination Center
精神病风险评估、数据集成和计算技术 (PREDICT):数据处理、分析和协调中心
- 批准号:
10256796 - 财政年份:2020
- 资助金额:
$ 468.47万 - 项目类别:
相似海外基金
Understanding How Adolescent Bullying Experiences Affect Traumatic Stress,Sexual Health and STI Risk among Men Who Have Sex with Men (MSM)
了解青少年欺凌经历如何影响男男性行为者 (MSM) 的创伤性压力、性健康和性传播感染风险
- 批准号:
10553263 - 财政年份:2022
- 资助金额:
$ 468.47万 - 项目类别:
Understanding How Adolescent Bullying Experiences Affect Traumatic Stress,Sexual Health and STI Risk among Men Who Have Sex with Men (MSM)
了解青少年欺凌经历如何影响男男性行为者 (MSM) 的创伤性压力、性健康和性传播感染风险
- 批准号:
10347813 - 财政年份:2022
- 资助金额:
$ 468.47万 - 项目类别:
Visuocortical Dynamics of Affect-Biased Attention in the Development of Adolescent Depression
青少年抑郁症发展过程中情感偏向注意力的视觉皮层动力学
- 批准号:
10380686 - 财政年份:2019
- 资助金额:
$ 468.47万 - 项目类别:
Visuocortical Dynamics of Affect-Biased Attention in the Development of Adolescent Depression
青少年抑郁症发展过程中情感偏向注意力的视觉皮层动力学
- 批准号:
9888437 - 财政年份:2019
- 资助金额:
$ 468.47万 - 项目类别:
Visuocortical Dynamics of Affect-Biased Attention in the Development of Adolescent Depression
青少年抑郁症发展过程中情感偏向注意力的视觉皮层动力学
- 批准号:
10597082 - 财政年份:2019
- 资助金额:
$ 468.47万 - 项目类别:
Targeting maladaptive responding to negative affect in adolescent cannabis users
针对青少年大麻使用者的负面影响的适应不良反应
- 批准号:
9371970 - 财政年份:2017
- 资助金额:
$ 468.47万 - 项目类别:
Childhood positive affect and anger as predictors of adolescent risky behavior
童年积极影响和愤怒是青少年危险行为的预测因素
- 批准号:
9139461 - 财政年份:2015
- 资助金额:
$ 468.47万 - 项目类别:
Do State Marijuana Policies Affect Adolescent Marijuana and Alcohol Use?
州大麻政策会影响青少年大麻和酒精的使用吗?
- 批准号:
8783159 - 财政年份:2014
- 资助金额:
$ 468.47万 - 项目类别:
Do State Marijuana Policies Affect Adolescent Marijuana and Alcohol Use?
州大麻政策会影响青少年大麻和酒精的使用吗?
- 批准号:
8853783 - 财政年份:2014
- 资助金额:
$ 468.47万 - 项目类别:
Assessment of Affect Instability in Adolescent Girls with BPD Features
具有 BPD 特征的青春期女孩的情绪不稳定评估
- 批准号:
8122499 - 财政年份:2011
- 资助金额:
$ 468.47万 - 项目类别: