The role of non-canonical neural codes in behavior
非规范神经编码在行为中的作用
基本信息
- 批准号:10458115
- 负责人:
- 金额:$ 38.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAnimal BehaviorAxonBehaviorBiochemicalBiological ModelsBiophysicsCodeDrosophila genusElementsEventExhibitsFeeding behaviorsGeneticGenetic ModelsHippocampus (Brain)HungerHybridsMammalsMediatingMembrane PotentialsModelingMolecularNeurobiologyNeuronal PlasticityNeuronsPathway interactionsPatternPhysiologyProcessProteinsRetinaRoleSchemeSignal TransductionStructureSynapsesSynaptic plasticityWorkanalogbasecircadian regulationdeprivationdigitalfeedinginformation processingneural circuitneurophysiologynovelpresynapticrelating to nervous systemresponsesleep qualitysleep regulationsugar
项目摘要
Project Summary/Abstract
The idea that information processing depends on neuronal firing rate (rate coding) has long been a central
dogma in neurobiology. However, other non-canonical coding schemes (temporal and “analog” codes) have
been proposed to carry meaningful information and be more computationally powerful than rate coding.
Importantly, the field has lacked powerful genetic model systems to disentangle non-canonical coding processes,
and I addressed this gap by defining two neural circuits in Drosophila that can be used to study temporal and
analog codes. I found that temporal coding underlies the circadian regulation of sleep in the Drosophila
DN1p clock neurons, whereas analog and potentially “hybrid” (analog + spiking) codes are used to
achieve axon-specific hunger processing in Drosophila DA-WED feeding neurons.
As a model system to understand how spiking temporal codes impact molecular signaling and behavior, we
will focus on Drosophila DN1p clock neurons having specific spiking patterns to control sleep quality through a
novel form of synaptic plasticity, SPDP (Spike Pattern Dependent Plasticity). To examine the molecular process
of SPDP formation, we will first characterize essential elements of the temporal structures within irregular spiking
patterns in DN1ps, as well as identify their biophysical origins. Next, we will investigate molecular mechanisms
that act downstream of presynaptic spiking patterns to transform electrical signals into biochemical responses.
We will also leverage the power of Drosophila genetics to delineate the entire molecular pathway required for
SPDP in DN1ps synapses.
As a model system to understand how nonspiking neuronal codes impact signaling and behavior, we will
focus on Drosophila DA-WED feeding neurons having local plasticity to control protein hunger behavior. Neural
coding paradigms have generally focused on “digital” all-or-none spike-based models. In mammals, pure
“analog” coding occurs in the retina, but recent work has shown that analog signaling modulates spike-based
signaling (“hybrid” coding) in the hippocampus and cortex. However, the function of these codes in neural
plasticity and behavior remains unclear. We recently discovered that the “protein coding” axonal branch, but not
the “sugar coding” axonal branch, exhibits sub-threshold membrane potential fluctuations of DA-WED feeding
neurons, following mild protein deprivation. Following severe protein deprivation, such analog signaling interacts
with spiking events to generate “hybrid” processing to achieve stronger and longer-lasting protein feeding
behavior. Thus, we will study the molecular processes mediating “analog” and “hybrid” signaling and how
“hybrid” codes may underlie localized branch-specific plasticity. In conclusion, these studies using Drosophila
DN1p clock neurons and DA-WED feeding neurons should elucidate fundamental principles for non-canonical
neural codes, determine the role of these neural codes in long-lasting behaviors and plasticity, and identify their
underlying molecular mechanisms.
项目总结/摘要
信息处理依赖于神经元放电率(速率编码)的观点长期以来一直是一个核心问题。
神经生物学的教条然而,其他非规范编码方案(时间和“模拟”代码)具有
已经提出来携带有意义的信息并且比速率编码在计算上更强大。
重要的是,该领域缺乏强大的遗传模型系统来解开非规范编码过程,
我通过定义果蝇的两个神经回路来解决这个问题,这两个神经回路可以用来研究时间和
模拟代码我发现时间编码是果蝇睡眠昼夜节律调节的基础
DN 1 p时钟神经元,而模拟和潜在的“混合”(模拟+尖峰)代码用于
在果蝇DA-WED摄食神经元中实现轴突特异性饥饿处理。
作为一个模型系统,以了解尖峰时间代码如何影响分子信号和行为,我们
将专注于果蝇DN 1 p时钟神经元具有特定的尖峰模式,以控制睡眠质量,
突触可塑性的新形式,SPDP(Spike Pattern Dependent Plasticity)。来检查分子过程
SPDP的形成,我们将首先描述不规则尖峰内的时间结构的基本要素
DN 1 ps的模式,以及确定其生物物理起源。接下来,我们将研究分子机制
它在突触前尖峰模式的下游起作用,将电信号转化为生化反应。
我们还将利用果蝇遗传学的力量来描绘整个分子途径,
DN 1 ps突触中的SPDP。
作为一个模型系统,以了解非尖峰神经元代码如何影响信号和行为,我们将
着重于果蝇DA-WED摄食神经元具有控制蛋白质饥饿行为的局部可塑性。神经
编码范例通常集中于基于“数字”全或无尖峰的模型。在哺乳动物中,纯
“模拟”编码发生在视网膜上,但最近的工作表明,模拟信号调制尖峰为基础的
信号(“混合”编码)在海马和皮质。然而,这些代码在神经网络中的功能
可塑性和行为仍不清楚。我们最近发现,“蛋白编码”轴突分支,但不是
“糖编码”轴突分支,表现出DA-WED摄食的亚阈值膜电位波动
神经元,轻度蛋白质剥夺。在严重的蛋白质剥夺后,这种类似信号相互作用
通过尖峰事件产生“混合”处理,以实现更强和更持久的蛋白质喂养,
行为因此,我们将研究介导“模拟”和“杂交”信号的分子过程,以及如何
“混合”代码可能是局部分支特异性可塑性的基础。总之,这些使用果蝇的研究
DN 1 p时钟神经元和DA-WED喂养神经元应该阐明非规范的基本原则,
神经代码,确定这些神经代码在持久行为和可塑性中的作用,并确定其
潜在的分子机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Masashi Tabuchi其他文献
Masashi Tabuchi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Masashi Tabuchi', 18)}}的其他基金
The role of non-canonical neural codes in behavior
非规范神经编码在行为中的作用
- 批准号:
10272678 - 财政年份:2021
- 资助金额:
$ 38.6万 - 项目类别:
The role of non-canonical neural codes in behavior
非规范神经编码在行为中的作用
- 批准号:
10794477 - 财政年份:2021
- 资助金额:
$ 38.6万 - 项目类别:
The role of non-canonical neural codes in behavior
非规范神经编码在行为中的作用
- 批准号:
10624314 - 财政年份:2021
- 资助金额:
$ 38.6万 - 项目类别:
Mechanisms mediating the relationship between temporal coding and sleep
调节时间编码与睡眠之间关系的机制
- 批准号:
10256758 - 财政年份:2020
- 资助金额:
$ 38.6万 - 项目类别:
Mechanisms mediating the relationship between temporal coding and sleep
调节时间编码与睡眠之间关系的机制
- 批准号:
10218338 - 财政年份:2020
- 资助金额:
$ 38.6万 - 项目类别:
相似海外基金
Wireless CMOS device for observing real-time brain activity and animal behavior
用于观察实时大脑活动和动物行为的无线 CMOS 设备
- 批准号:
23K06786 - 财政年份:2023
- 资助金额:
$ 38.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Landscapes of fear in the Anthropocene: Linking predation risk and human disturbance to animal behavior and ecological outcomes
人类世的恐惧景观:将捕食风险和人类干扰与动物行为和生态结果联系起来
- 批准号:
RGPIN-2022-03096 - 财政年份:2022
- 资助金额:
$ 38.6万 - 项目类别:
Discovery Grants Program - Individual
The role of biological interactions in the evolution of animal behavior
生物相互作用在动物行为进化中的作用
- 批准号:
RGPIN-2019-06689 - 财政年份:2022
- 资助金额:
$ 38.6万 - 项目类别:
Discovery Grants Program - Individual
Development of Semi-Supervised Learning Method using Compressed Video for Real-Time Animal Behavior Analysis
使用压缩视频进行实时动物行为分析的半监督学习方法的开发
- 批准号:
22H03637 - 财政年份:2022
- 资助金额:
$ 38.6万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Landscapes of fear in the Anthropocene: Linking predation risk and human disturbance to animal behavior and ecological outcomes
人类世的恐惧景观:将捕食风险和人类干扰与动物行为和生态结果联系起来
- 批准号:
DGECR-2022-00323 - 财政年份:2022
- 资助金额:
$ 38.6万 - 项目类别:
Discovery Launch Supplement
Neural and molecular mechanisms of microbe-sensing in the control of animal behavior - Resubmission - 1
微生物传感控制动物行为的神经和分子机制 - 重新提交 - 1
- 批准号:
10315486 - 财政年份:2021
- 资助金额:
$ 38.6万 - 项目类别:
Neural and molecular mechanisms of microbe-sensing in the control of animal behavior - Resubmission - 1
微生物传感控制动物行为的神经和分子机制 - 重新提交 - 1
- 批准号:
10412977 - 财政年份:2021
- 资助金额:
$ 38.6万 - 项目类别:
REU Site: Animal Behavior in Context
REU 网站:背景下的动物行为
- 批准号:
2050311 - 财政年份:2021
- 资助金额:
$ 38.6万 - 项目类别:
Standard Grant
Molecular recording to predict cell fate decisions and animal behavior
分子记录预测细胞命运决定和动物行为
- 批准号:
10260139 - 财政年份:2021
- 资助金额:
$ 38.6万 - 项目类别: