Geodetic groups: foundational problems in algebra and computer science
大地测量群:代数和计算机科学的基础问题
基本信息
- 批准号:DP210100271
- 负责人:
- 金额:$ 30.62万
- 依托单位:
- 依托单位国家:澳大利亚
- 项目类别:Discovery Projects
- 财政年份:2021
- 资助国家:澳大利亚
- 起止时间:2021-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project aims to resolve important and longstanding open problems in Geometric Group Theory and Theoretical Computer Science. Since the 1980s researchers have conjectured that the geometric property of being geodetic is equivalent to several purely algebraic, algorithmic, and language-theoretic characterisations.
The project team's expertise in geodesic properties of groups, the interaction between formal languages and groups, and the theory of rewriting systems, together with recent breakthroughs by the team ensures that significant results can be expected.
Benefits include training research students and postdoctoral researchers in cutting-edge techniques, and advancing fundamental knowledge in mathematics and computer science.
该项目旨在解决几何群论和理论计算机科学中重要且长期存在的开放性问题。自20世纪80年代以来,研究人员推测,geodetic的几何性质等同于几个纯粹的代数、算法和语言理论特征。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Prof Murray Elder其他文献
Prof Murray Elder的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Prof Murray Elder', 18)}}的其他基金
The language complexity of problems in algebra and logic
代数和逻辑问题的语言复杂性
- 批准号:
DP160100486 - 财政年份:2016
- 资助金额:
$ 30.62万 - 项目类别:
Discovery Projects
Algorithmic and computational advances in geometric group theory
几何群论的算法和计算进展
- 批准号:
FT110100178 - 财政年份:2012
- 资助金额:
$ 30.62万 - 项目类别:
ARC Future Fellowships
相似海外基金
Parent-focused primary prevention of child sexual abuse: An Effectiveness-Implementation Hybrid Trial
以家长为中心的儿童性虐待一级预防:有效性-实施混合试验
- 批准号:
10583612 - 财政年份:2023
- 资助金额:
$ 30.62万 - 项目类别:
Implicit racial bias in pediatric emergency medicine: A foundational investigation of physician behaviors
儿科急诊医学中的隐性种族偏见:对医生行为的基础调查
- 批准号:
10722681 - 财政年份:2023
- 资助金额:
$ 30.62万 - 项目类别:
Rise-HP: Reimagining Interventions for Support and Education in Hypersensitivity Pneumonitis; A Stakeholder Engaged Intervention to Improve Health-Related Quality of Life
Rise-HP:重新构想对过敏性肺炎的支持和教育干预措施;
- 批准号:
10427983 - 财政年份:2022
- 资助金额:
$ 30.62万 - 项目类别:
Rise-HP: Reimagining Interventions for Support and Education in Hypersensitivity Pneumonitis; A Stakeholder Engaged Intervention to Improve Health-Related Quality of Life
Rise-HP:重新构想对过敏性肺炎的支持和教育干预措施;
- 批准号:
10687074 - 财政年份:2022
- 资助金额:
$ 30.62万 - 项目类别:
Optimization of hyperlipidemia management among patients with rheumatoid arthritis: A patient-centered intervention development
类风湿关节炎患者高脂血症管理的优化:以患者为中心的干预措施发展
- 批准号:
10443313 - 财政年份:2022
- 资助金额:
$ 30.62万 - 项目类别:
Growing the Genetics of Addiction Workforce with URM Faculty-Student Research Experiences
利用 URM 师生研究经验来培养成瘾劳动力的遗传学
- 批准号:
10398985 - 财政年份:2021
- 资助金额:
$ 30.62万 - 项目类别:
Growing the Genetics of Addiction Workforce with URM Faculty-Student Research Experiences
利用 URM 师生研究经验来培养成瘾劳动力的遗传学
- 批准号:
10264463 - 财政年份:2021
- 资助金额:
$ 30.62万 - 项目类别:
Growing the Genetics of Addiction Workforce with URM Faculty-Student Research Experiences
利用 URM 师生研究经验来培养成瘾劳动力的遗传学
- 批准号:
10591564 - 财政年份:2021
- 资助金额:
$ 30.62万 - 项目类别:
Self-weighing for Weight Management in Adolescents with Obesity
肥胖青少年体重管理的自我称重
- 批准号:
10462745 - 财政年份:2021
- 资助金额:
$ 30.62万 - 项目类别:














{{item.name}}会员




