High-Throughput Single Cell Mechanomics

高通量单细胞力学

基本信息

  • 批准号:
    10462589
  • 负责人:
  • 金额:
    $ 20.08万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Summary. Phenotypic heterogeneity in cellular bulk populations can result in consequential differences in their response to physical as well as biochemical stimuli. To assess heterogeneity at single cell resolution, several methods have been developed, yet true predictability of cells’ future behavior cannot be reliably determined. To address this challenge, the proposed work will develop a new technological approach to solve the bulk cell heterogeneity problem coined as ‘single cell mechanomics’. This technology will record compression induced dynamic signaling response of single cells to predict and/or drive their future behavior. The technological innovation consists of a ‘smart’ microfluidic device with light actuated microtraps that can capture and compress single cells, and concurrently assess their signaling response, before releasing and capturing each individual cells for subsequent downstream monoclonal culture and analysis. To prove feasibility of this technology, human mesenchymal stromal cells (MSCs) will be used as a representative mechanoresponsive and highly heterogeneous cell type. Aim 1 will design and develop ‘smart’ microfluidic devices with light-actuated mictraps, while Aim 2 will establish a framework to predict and/or drive single cells’ phenotypic outcome based on calcium oscillation dynamics of mechanically compressed single cells. Multivariate predictive analyses will be used to identify relationships between compressive stimuli, calcium signaling, and phenotypic outcome. New relationships derived from this work will be used to identify and sort target cell populations based on their future phenotypes. At present, there is no demonstration of such a technology in the literature. This aligns with the high-risk requirements of this R21 solicitation of having significant future impact.
摘要细胞群体中的表型异质性可导致其细胞遗传多样性的相应差异。 对物理和生化刺激的反应。为了评估单细胞分辨率的异质性, 虽然已经开发了一些方法,但是不能可靠地确定细胞未来行为的真正可预测性。到 为了应对这一挑战,拟议的工作将开发一种新的技术方法来解决散装电池 异质性问题被称为“单细胞力学”。这项技术将记录压缩引起的 单细胞的动态信号响应,以预测和/或驱动它们的未来行为。技术 创新包括一个“智能”微流体装置,具有光驱动的微陷阱,可以捕获和压缩 单个细胞,并同时评估它们的信号响应,然后释放和捕获每个个体, 细胞用于随后的下游单克隆培养和分析。为了证明这项技术的可行性, 间充质基质细胞(MSC)将被用作代表性的机械响应性和高度机械响应性的细胞。 异质细胞类型。目标1将设计和开发具有光致动微阱的“智能”微流体装置, 而Aim 2将建立一个框架来预测和/或驱动基于钙的单细胞表型结果, 机械压缩单细胞的振荡动力学。多变量预测分析将用于 确定压迫刺激、钙信号和表型结果之间的关系。新 从这项工作中得出的关系将用于根据靶细胞群的未来来识别和分类靶细胞群。 表型目前,在文献中还没有这种技术的演示。这与 本次R21招标的高风险要求对未来有重大影响。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Printing Double-Network Tough Hydrogels Using Temperature-Controlled Projection Stereolithography (TOPS).
  • DOI:
    10.1021/acsami.3c04661
  • 发表时间:
    2023-06-28
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Kunwar, Puskal;Andrada, Bianca Louise;Poudel, Arun;Xiong, Zheng;Aryal, Ujjwal;Geffert, Zachary J. J.;Poudel, Sajag;Fougnier, Daniel;Gitsov, Ivan;Soman, Pranav
  • 通讯作者:
    Soman, Pranav
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pranav Soman其他文献

Pranav Soman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pranav Soman', 18)}}的其他基金

High-Throughput Single Cell Mechanomics
高通量单细胞力学
  • 批准号:
    10193908
  • 财政年份:
    2021
  • 资助金额:
    $ 20.08万
  • 项目类别:
Osteocyte Signaling Within Mineralized Lacuna-Canaliculi Microenvironment
矿化腔隙-小管微环境中的骨细胞信号传导
  • 批准号:
    10240448
  • 财政年份:
    2020
  • 资助金额:
    $ 20.08万
  • 项目类别:
Multiscale Fabrication and Imaging Platform for Bioscience Applications
适用于生物科学应用的多尺度制造和成像平台
  • 批准号:
    9752632
  • 财政年份:
    2018
  • 资助金额:
    $ 20.08万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 20.08万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.08万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 20.08万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.08万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 20.08万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 20.08万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.08万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 20.08万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 20.08万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.08万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了