Osteocyte Signaling Within Mineralized Lacuna-Canaliculi Microenvironment
矿化腔隙-小管微环境中的骨细胞信号传导
基本信息
- 批准号:10240448
- 负责人:
- 金额:$ 16.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:3D PrintAblationBiochemicalBiocompatible MaterialsBody FluidsBone DiseasesBone MatrixCalcium SignalingCell LineCellsCellular biologyCharacteristicsConfocal MicroscopyDendritic CellsDiffusionDiseaseEvaluationFluorescence MicroscopyFunctional disorderGap JunctionsGasesGelatinGoalsHomeostasisHybridsHydrogelsHypoxiaIncubatorsIndividualLasersLocationMeasuresMechanical StimulationMechanicsMethacrylatesMethodsMicrofluidic MicrochipsMicrofluidicsMineralsModelingMorphologyMusNutrientNutrient CanalsOpticsOrthopedic ProceduresOsteocytesOsteonPathologyPatientsPeriodicityPhysiologicalPlayPrintingPropertyRefractoryRiskSignal TransductionSpeedStructureTechnologyTestingTimeTime StudyWorkbasebonebone cellcalcificationcell injurydesignhigh riskhormonal signalsin vitro Modelin vivoinhibitor/antagonistinsightmechanical forcemechanotransductionnew technologynovel therapeuticspreservationshear stressskeletalskeletal abnormalitytherapeutic target
项目摘要
Summary
Although it is widely accepted that osteocytes regulate bone homeostasis by sensing, integrating and
transducing mechanical and hormonal signals, characterization of dynamic signaling within the osteocyte
network has been challenging due to its location embedded within the bone matrix. Osteocytes reside within a
mineralized lacunar-canalicular (MLC) structure allowing sensing of mechanical forces and transduction this
signal through gap-junctions and secreted exchange of soluble biochemical signals. The MLC structure
modulates access of essential nutrients between vasculature and entombed osteocytes in a spatially gradient
manner. New understanding on osteocyte signaling will be necessary to develop new therapeutics for treating
diseases that involve osteocyte dysfunction. To that end, the goal of this work is to develop a new in vitro model
that will not only mimic the in vivo like MLC structure, but also facilitate the study of signaling dynamics within an
osteocyte network upon targeted mechanical stimulation or cell damage. The hypothesis that, “the nutrient
gradient that osteocyte encounter is a function of the mineralized lacunar-canalicular (MLC) structure, which in
turn regulates their signal propagation dynamics”, will be tested using three specific aims. Aim 1 will use a Hybrid
Laser Printing (HLP) platform to develop a microfluidic chip that mimics the MLC structure with associated
gradient nutrient transport properties. Aim 2 will identify experimental conditions to generate osteocyte network
within MLC chips using the mouse MLO-Y4 osteocyte cell line. Aim 3 will characterize propagation characteristics
of calcium signaling (amplitude, range, velocity, refractory period, spike-synchrony) within osteocyte networks
upon targeted mechanical stimulation, cell-damage, ablation of cell-cell connections, or in the presence of
signaling inhibitors. In summary, individual and combined effects of (i) MLC structure-induced gradient nutrient
access (ii) mineralized matrix, (iii) environmental hypoxia, and (iv) single cell manipulation, on calcium signaling
dynamics will provide new insights into osteocyte mechanotransduction. In the long term, this model can be
extended to patient-specific cells to screen therapeutics that target skeletal pathologies associated with
osteocyte malfunctions.
摘要
尽管人们普遍认为,骨细胞通过感知、整合和
传递机械和激素信号,骨细胞内动态信号的特征
由于其嵌入在骨基质中的位置,网络一直具有挑战性。骨细胞驻留在
矿化的腔隙-管(MLC)结构,允许感测机械力并将其传递给
通过缝隙连接和可溶性生化信号的分泌交换来传递信号。MLC结构
在空间梯度中调节血管和埋藏的骨细胞之间必需营养物质的获取
举止。对骨细胞信号转导的新认识对于开发新的治疗方法是必要的
涉及骨细胞功能障碍的疾病。为此,这项工作的目标是开发一种新的体外模型
这不仅将模拟体内类似MLC的结构,而且有助于研究细胞内的信号动力学
骨细胞在靶向机械刺激或细胞损伤时形成网络。假设,“营养素
骨细胞遇到的倾斜度是矿化陷窝-管状(MLC)结构的函数,在
TURN调节他们的信号传播动态“,将使用三个具体目标进行测试。AIM 1将使用混合动力车
激光打印(HLP)平台开发一种模拟MLC结构的微流控芯片
营养物质的梯度传输特性。目标2将确定生成骨细胞网络的实验条件
在MLC芯片内使用小鼠MLO-Y4骨细胞系。目标3将描述传播特征
钙信号(幅度、幅度、速度、不应期、峰同步)在骨细胞网络中的作用
在有针对性的机械刺激、细胞损伤、细胞-细胞连接的消融或在
信号转导抑制剂。综上所述,(I)MLC结构诱导的梯度养分的单独效应和联合效应
(Ii)矿化基质,(Iii)环境低氧,和(Iv)单细胞操作,对钙信号的影响
动力学将为骨细胞的机械转导提供新的见解。从长远来看,这种模式可以
扩展到患者特定细胞以筛选针对与以下疾病相关的骨骼病理的治疗药物
骨细胞功能障碍。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
In vitromodel to study confined osteocyte networks exposed to flow-induced mechanical stimuli.
- DOI:10.1088/1748-605x/aca37c
- 发表时间:2022-11-25
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pranav Soman其他文献
Pranav Soman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pranav Soman', 18)}}的其他基金
Multiscale Fabrication and Imaging Platform for Bioscience Applications
适用于生物科学应用的多尺度制造和成像平台
- 批准号:
9752632 - 财政年份:2018
- 资助金额:
$ 16.01万 - 项目类别:
相似海外基金
Targeted ablation of cerebral atherosclerosis using supramolecular self-assembly
利用超分子自组装靶向消融脑动脉粥样硬化
- 批准号:
24K21101 - 财政年份:2024
- 资助金额:
$ 16.01万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
心房細動に対するPulsed Field Ablationの組織創傷治癒過程を明らかにする網羅的研究
阐明房颤脉冲场消融组织伤口愈合过程的综合研究
- 批准号:
24K11201 - 财政年份:2024
- 资助金额:
$ 16.01万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
遅延造影心臓MRIによる心房細動Ablation冷却効果の比較:28 vs. 31 mm Cryoballoon
使用延迟对比增强心脏 MRI 比较房颤消融冷却效果:28 毫米与 31 毫米 Cryoballoon
- 批准号:
24K11281 - 财政年份:2024
- 资助金额:
$ 16.01万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
InSPACE-VT_Development and Validation of Virtual Pace Mapping to Guide Catheter Ablation of Ventricular Tachycardia
InSPACE-VT_虚拟起搏测绘的开发和验证以指导室性心动过速导管消融
- 批准号:
EP/Z001145/1 - 财政年份:2024
- 资助金额:
$ 16.01万 - 项目类别:
Fellowship
CAREER: Heat Penetration Depth and Direction Control with Closed-Loop Device for Precision Ablation
职业:利用闭环装置控制热穿透深度和方向,实现精确烧蚀
- 批准号:
2338890 - 财政年份:2024
- 资助金额:
$ 16.01万 - 项目类别:
Continuing Grant
Collaborative Research: RUI: Frontal Ablation Processes on Lake-terminating Glaciers and their Role in Glacier Change
合作研究:RUI:湖终止冰川的锋面消融过程及其在冰川变化中的作用
- 批准号:
2334777 - 财政年份:2024
- 资助金额:
$ 16.01万 - 项目类别:
Continuing Grant
Collaborative Research: RUI: Frontal Ablation Processes on Lake-terminating Glaciers and their Role in Glacier Change
合作研究:RUI:湖终止冰川的锋面消融过程及其在冰川变化中的作用
- 批准号:
2334775 - 财政年份:2024
- 资助金额:
$ 16.01万 - 项目类别:
Continuing Grant
Collaborative Research: RUI: Frontal Ablation Processes on Lake-terminating Glaciers and their Role in Glacier Change
合作研究:RUI:湖终止冰川的锋面消融过程及其在冰川变化中的作用
- 批准号:
2334776 - 财政年份:2024
- 资助金额:
$ 16.01万 - 项目类别:
Continuing Grant
Cryo laser-ablation system (157+193nm) with 'triple-quad' plasma mass spectrometer, Cryo-LA-ICPMS/MS
带有“三重四极杆”等离子体质谱仪、Cryo-LA-ICPMS/MS 的冷冻激光烧蚀系统 (157 193nm)
- 批准号:
515081333 - 财政年份:2023
- 资助金额:
$ 16.01万 - 项目类别:
Major Research Instrumentation
MRI: Acquisition of a Laser Ablation - Inductively Coupled Plasma - Triple Quadrupole - Mass Spectrometer (LA-ICP-QQQ-MS) System For Research and Education
MRI:获取用于研究和教育的激光烧蚀 - 电感耦合等离子体 - 三重四极杆 - 质谱仪 (LA-ICP-MS/MS) 系统
- 批准号:
2320040 - 财政年份:2023
- 资助金额:
$ 16.01万 - 项目类别:
Standard Grant