Multiscale Fabrication and Imaging Platform for Bioscience Applications
适用于生物科学应用的多尺度制造和成像平台
基本信息
- 批准号:9752632
- 负责人:
- 金额:$ 18.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAblationAddressAdoptionBindingBiocompatible MaterialsBiologicalBiological PhenomenaBiological ProcessBiological SciencesBiologyBiomedical ResearchCardiovascular systemCellsCellular biologyCommunicationComplexDendritic CellsDevicesDimensionsDiseaseEnvironmentEquilibriumEventExtracellular MatrixGelatinGlassGoalsHybridsHydrogelsImageImaging TechniquesImaging technologyImmune systemInvestigationLasersLightingLiquid substanceMethacrylatesMethodsMicrofluidic MicrochipsMicroscopyModelingMonitorNanotubesNervous system structureOpticsOrganOsteocytesPhotosensitivityPhysiologic pulsePolyethylene GlycolsPolymersPrintingProcessResearch PersonnelResolutionScienceSignal TransductionSkeletal systemSpeedStructureSystemTechnologyTestingTissuesWorkbasebiological systemsbiomaterial compatibilitycell motilitydesigndigitalfluorescence imagingimaging capabilitiesimaging platformimaging systemintercellular communicationinterestlithographymechanical propertiesmillimeternanometer resolutionnanoscalenew technologynon-invasive imagingpolydimethylsiloxanepreventscale upsubmicrontwo-dimensional
项目摘要
Project Summary/Abstract
New technology is needed to investigate nanoscale intercellular communication in dendritic cells, a process
which shares commonality with a broad range of tissues such as the skeletal, nervous, cardiovascular, and
immune systems. The proposed work will design, build and characterize an integrated multiscale fabrication
and imaging platform capable of building multiscale devices and systems using biocompatible and commonly
used materials in biomedical sciences, and capable of non-invasively imaging the biology-of-interest at multiple
scales with high resolution and high speed. This project will be divided into two specific aims, with two modules
in each aim. Aim 1 will focus on developing the capability of fabricating devices that could span from centimeter
to nanometer resolution using commonly used polydimethylsiloxane, synthetic polyethylene glycol diacrylate
hydrogel and naturally derived gelatin methacrylate hydrogel materials. In module 1, a hybrid additive-subtractive
process based on ultrafast lasers will be developed to allow fabrication of devices with a feature range of several
centimeters to 0.5micrometer, while in module 2, STimulated Emission Depletion (STED) inspired lithography
will be used to print nanoscale structures with a feature range from 0.5micrometer to less than 100nanometers.
Aim 2 will focus on integrating super resolution and 3D sectional imaging capabilities within the platform. In
module 3, STED microscopy will be designed to achieve an imaging resolution of sub-100nm, while in module
4, Digital Micromirror Device-Structural Illumination Microscopy (DMD-SIM) will be used to achieve high-speed
wide-angle sectional imaging capabilities. We will demonstrate the new capabilities of the proposed platform by
developing a multiscale fluidic device that replicates the 3D nanoscale canaliculi structure found in the skeletal
systems – a task not possible with current technology. If successful, the proposed work will enable researchers
to ask new questions concerning a broad range of cells, tissues, systems and disease types that could not be
studied adequately in the absence of such a technology.
项目总结/摘要
需要新技术来研究树突状细胞中的纳米级细胞间通讯,
它与广泛的组织如骨骼、神经、心血管和
免疫系统拟议的工作将设计,建立和表征一个集成的多尺度制造
和成像平台,其能够使用生物相容的和通常
生物医学科学中使用的材料,并且能够在多个位置对感兴趣的生物进行非侵入性成像。
具有高分辨率和高速度。该项目将分为两个具体目标,两个模块
在每一个目标。Aim 1将专注于开发制造从厘米到厘米的设备的能力
以纳米分辨率使用常用的聚二甲基硅氧烷,合成聚乙二醇二丙烯酸酯
水凝胶和天然衍生明胶甲基丙烯酸酯水凝胶材料。在模块1中,混合加减
将开发基于超快激光器的工艺,以允许制造具有几个特征范围的器件
厘米至0.5微米,而在模块2中,STIMUTED发射耗尽(STED)启发光刻
将用于打印纳米结构,其特征范围从0.5微米到小于100纳米。
Aim 2将专注于在平台内集成超分辨率和3D断层成像功能。在
模块3,STED显微镜将被设计为实现亚100纳米的成像分辨率,而在模块
4、采用数字微镜器件-结构照明显微镜(DMD-SIM)实现高速
广角断层成像能力。我们将通过以下方式展示拟议平台的新功能:
开发一种多尺度流体装置,复制骨骼中发现的3D纳米级小管结构,
系统-这是目前技术无法完成的任务。如果成功,这项工作将使研究人员
提出关于广泛的细胞、组织、系统和疾病类型的新问题,
在没有这种技术的情况下进行了充分的研究。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(2)
Perfusion-based co-culture model system for bone tissue engineering.
- DOI:10.3934/bioeng.2020009
- 发表时间:2020
- 期刊:
- 影响因子:2.3
- 作者:Sawyer SW;Zhang K;Horton JA;Soman P
- 通讯作者:Soman P
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pranav Soman其他文献
Pranav Soman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pranav Soman', 18)}}的其他基金
Osteocyte Signaling Within Mineralized Lacuna-Canaliculi Microenvironment
矿化腔隙-小管微环境中的骨细胞信号传导
- 批准号:
10240448 - 财政年份:2020
- 资助金额:
$ 18.75万 - 项目类别:
相似海外基金
心房細動に対するPulsed Field Ablationの組織創傷治癒過程を明らかにする網羅的研究
阐明房颤脉冲场消融组织伤口愈合过程的综合研究
- 批准号:
24K11201 - 财政年份:2024
- 资助金额:
$ 18.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Targeted ablation of cerebral atherosclerosis using supramolecular self-assembly
利用超分子自组装靶向消融脑动脉粥样硬化
- 批准号:
24K21101 - 财政年份:2024
- 资助金额:
$ 18.75万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
遅延造影心臓MRIによる心房細動Ablation冷却効果の比較:28 vs. 31 mm Cryoballoon
使用延迟对比增强心脏 MRI 比较房颤消融冷却效果:28 毫米与 31 毫米 Cryoballoon
- 批准号:
24K11281 - 财政年份:2024
- 资助金额:
$ 18.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Heat Penetration Depth and Direction Control with Closed-Loop Device for Precision Ablation
职业:利用闭环装置控制热穿透深度和方向,实现精确烧蚀
- 批准号:
2338890 - 财政年份:2024
- 资助金额:
$ 18.75万 - 项目类别:
Continuing Grant
Collaborative Research: RUI: Frontal Ablation Processes on Lake-terminating Glaciers and their Role in Glacier Change
合作研究:RUI:湖终止冰川的锋面消融过程及其在冰川变化中的作用
- 批准号:
2334777 - 财政年份:2024
- 资助金额:
$ 18.75万 - 项目类别:
Continuing Grant
Collaborative Research: RUI: Frontal Ablation Processes on Lake-terminating Glaciers and their Role in Glacier Change
合作研究:RUI:湖终止冰川的锋面消融过程及其在冰川变化中的作用
- 批准号:
2334775 - 财政年份:2024
- 资助金额:
$ 18.75万 - 项目类别:
Continuing Grant
InSPACE-VT_Development and Validation of Virtual Pace Mapping to Guide Catheter Ablation of Ventricular Tachycardia
InSPACE-VT_虚拟起搏测绘的开发和验证以指导室性心动过速导管消融
- 批准号:
EP/Z001145/1 - 财政年份:2024
- 资助金额:
$ 18.75万 - 项目类别:
Fellowship
Collaborative Research: RUI: Frontal Ablation Processes on Lake-terminating Glaciers and their Role in Glacier Change
合作研究:RUI:湖终止冰川的锋面消融过程及其在冰川变化中的作用
- 批准号:
2334776 - 财政年份:2024
- 资助金额:
$ 18.75万 - 项目类别:
Continuing Grant
MRI: Acquisition of a Laser Ablation - Inductively Coupled Plasma - Triple Quadrupole - Mass Spectrometer (LA-ICP-QQQ-MS) System For Research and Education
MRI:获取用于研究和教育的激光烧蚀 - 电感耦合等离子体 - 三重四极杆 - 质谱仪 (LA-ICP-MS/MS) 系统
- 批准号:
2320040 - 财政年份:2023
- 资助金额:
$ 18.75万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: An experimentally validated, interactive, data-enabled scientific computing platform for cardiac tissue ablation characterization and monitoring
合作研究:CDS
- 批准号:
2245152 - 财政年份:2023
- 资助金额:
$ 18.75万 - 项目类别:
Standard Grant














{{item.name}}会员




