Toward a deeper understanding of allostery and allotargeting by computational approaches
通过计算方法更深入地理解变构和异体靶向
基本信息
- 批准号:10462594
- 负责人:
- 金额:$ 2.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-05 至 2023-01-03
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAllosteric SiteAmino AcidsAttentionBenchmarkingBiologicalBiological ProcessCase StudyCellsCollaborationsCommunitiesComplementComplexComputer ModelsComputing MethodologiesCrowdingCryoelectron MicroscopyDataData SetDatabasesDevelopmentDimensionsDiscriminationDistalElementsEventFamily memberFour-dimensionalFrequenciesGoalsGrainGrowthHumanHybridsInterventionLettersLibrariesLigand BindingLightMapsMechanicsMethodologyMethodsModelingMolecularMolecular ConformationMotionMutationOrthologous GenePathogenicityPathway interactionsPerformancePharmacologic SubstancePharmacologyPoint MutationProtein DynamicsProtein FamilyProteinsResourcesSamplingScanningSiteSolidStructureSystemTechnologyTestingTimeTranslationsValidationVariantWorkanalytical methodapplication programming interfacebasecomputerized toolscomputing resourcesconformercryptic proteindesigneffective interventionexperimental studyimprovedinnovationintermolecular interactionloss of functionmachine learning algorithmmachine learning methodmethod developmentmolecular dynamicsmulti-scale modelingnetwork modelsnew technologynovelparalogous genepharmacophoreprotein protein interactionresponsesimulationthree dimensional structuretool
项目摘要
Toward a deeper understanding of allostery and allotargeting by computational
approaches
Understanding allosteric mechanisms of action and their modulation by ligand binding (allo-
targeting) gained importance in recent years, as allosteric modulators allow for selective
interference with specific protein-protein interactions (PPI) or cellular pathways. Yet, despite the
growth of data and methodologies, we still lack a solid understanding of allosteric mechanisms
that underlie biological function. We propose that a completely new framework, with focus on the
change in structural dynamics rather than changes in the states only, is needed. Furthermore,
rather than limiting our attention to transitions between two end-states (e.g. open/closed forms of
a protein), one needs to consider the complete ensemble of conformers, and evaluate the effect
of intermolecular interactions or mutations vis-à-vis the changes elicited in the conformational
landscape. Toward this goal, we propose to develop, implement, and apply innovative
computational models and methods that will focus on the essential dynamics of biomolecular
systems. Essential dynamics refers to the global modes of motions intrinsically accessible to the
overall structure, i.e. they cooperatively engage most, if not all, structural elements of the biological
assembly. We propose to: (1) develop, test, and validate an essential site scanning analysis
(ESSA) methodology for predicting ‘essential’ sites that dominate the essential dynamics, and
discriminating allosteric sites among them (Aim 1), (2) enhance the capability and accuracy of our
pathogenicity predictor, RHAPSODY, for evaluating the impact of mutations (single amino acid
variants) on biological function, by including in our machine learning algorithm the features derived
from global motions of biomolecular systems, the signature dynamics of protein families, and the
experimentally resolved PPIs (Aim 2), and (3) develop a hybrid methodology for efficient
assessment of conformational landscapes applicable to proteins containing cryptic sites and cryo-
EM structures (Aim 3), and finally extend and integrate these new methodologies to enable their
efficient translation to biomedical and pharmacological applications. Method development, testing,
validation, and further extensions will entail rigorous benchmarking against other methods and/or
relevant databases where applicable, in addition to detailed case studies in collaboration with
other labs (see support letters from six experimental and one computational collaborator).
Integration of the methodologies within our well-established application programming interface
ProDy will enable efficient dissemination and wide usage of the new technologies by the broader
community.
更深入地了解变构和分配目标的计算
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ivet Bahar其他文献
Ivet Bahar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ivet Bahar', 18)}}的其他基金
Toward a deeper understanding of allostery and allotargeting by computational approaches
通过计算方法更深入地理解变构和异体靶向
- 批准号:
10231654 - 财政年份:2021
- 资助金额:
$ 2.73万 - 项目类别:
Toward a deeper understanding of allostery and allotargeting by computational approaches
通过计算方法更深入地理解变构和异体靶向
- 批准号:
10887238 - 财政年份:2021
- 资助金额:
$ 2.73万 - 项目类别:
Toward a deeper understanding of allostery and allotargeting by computational approaches
通过计算方法更深入地理解变构和异体靶向
- 批准号:
10612069 - 财政年份:2021
- 资助金额:
$ 2.73万 - 项目类别:
Structure and function of PTH class B GPCR
PTH B 类 GPCR 的结构和功能
- 批准号:
10657916 - 财政年份:2018
- 资助金额:
$ 2.73万 - 项目类别:
NIDA Center of Excellence OF Computational Drug Abuse Research (CDAR)
NIDA 计算药物滥用研究卓越中心 (CDAR)
- 批准号:
8743368 - 财政年份:2014
- 资助金额:
$ 2.73万 - 项目类别:
NIDA Center of Excellence OF Computational Drug Abuse Research (CDAR)
NIDA 计算药物滥用研究卓越中心 (CDAR)
- 批准号:
8896676 - 财政年份:2014
- 资助金额:
$ 2.73万 - 项目类别:
Center for causal Modeling and discovery of Biomedical Knowledge from Big Data
大数据因果建模和生物医学知识发现中心
- 批准号:
8935874 - 财政年份:2014
- 资助金额:
$ 2.73万 - 项目类别:
Center for causal Modeling and discovery of Biomedical Knowledge from Big Data
大数据因果建模和生物医学知识发现中心
- 批准号:
9404096 - 财政年份:2014
- 资助金额:
$ 2.73万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 2.73万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 2.73万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 2.73万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 2.73万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 2.73万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 2.73万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 2.73万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 2.73万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 2.73万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 2.73万 - 项目类别:
Continuing Grant