Center for causal Modeling and discovery of Biomedical Knowledge from Big Data
大数据因果建模和生物医学知识发现中心
基本信息
- 批准号:8935874
- 负责人:
- 金额:$ 273万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-29 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:AcademiaAddressAdvanced DevelopmentAlgorithmic SoftwareAlgorithmsAutomobile DrivingBig DataBiologyBiomedical ResearchCodeCollaborationsComplexComputer softwareComputing MethodologiesDataData SetDatabasesDevelopmentDiseaseEducation and OutreachEducational process of instructingFeedbackGoalsGovernmentHealthHumanIndustryKnowledgeLeadLocationLogicMedicineMethodsMissionModelingMonitorNaturePoliciesQualitative EvaluationsQuantitative EvaluationsResearchResearch InfrastructureResearch PersonnelScienceScientistSiteSoftware ToolsStagingTimeLineTrainingWorkbiomedical scientistcareercausal modelcomputer based statistical methodsdesigngraduate studentimprovedinnovationmeetingsmethod developmentprogramspublic health relevancesymposiumtool
项目摘要
DESCRIPTION (provided by applicant): Much of science consists of discovering and modeling causal relationships that occur in nature. Increasingly big data are being used to drive such discoveries. There is a pressing need for methods that can efficiently infer causal networks from large and diverse types of biomedical data and background knowledge. This center of excellence will develop, implement, and evaluate an integrated set of tools that support causal modeling and discovery (CMD) of biomedical knowledge from very large and complex biomedical data. We also plan to actively share our knowledge, methods, and tools with others, through an innovative set of training and consortium activities. In the past 25 years, there has been tremendous progress in developing general computational methods for representing and discovering causal knowledge from data, based on a representation called causal Bayesian networks (CBNs). These methods have been applied successfully in a wide range of fields, including medicine and biology. While much progress has been made in the development of these computational methods, they are not readily available, sufficiently efficient, nor easy to use by biomedical scientists, and they have not been reconfigured to exploit the increasingly Big Data available for analysis. This Center will make these methods widely available, highly efficient when applied to big datasets, and easy to use. The proposed Center will provide a powerful set of concepts and tools that accelerate the discovery and sharing of causal knowledge derived from very large and complex biomedical datasets. The approaches and products emanating from this center of excellence are likely to have a significant positive impact on our understanding of health and disease, and thereby on the improvement of human health.
描述(由申请人提供):大部分科学都包括发现和建模自然界中发生的因果关系。越来越多的大数据被用来推动这些发现。迫切需要能够从大量不同类型的生物医学数据和背景知识中有效推断因果网络的方法。该卓越中心将开发,实施和评估一套集成的工具,以支持从非常庞大和复杂的生物医学数据中进行生物医学知识的因果建模和发现(CMD)。我们还计划通过一系列创新的培训和联盟活动,积极与他人分享我们的知识、方法和工具。在过去的25年里,基于一种称为因果贝叶斯网络(CBN)的表示方法,开发用于从数据中表示和发现因果知识的通用计算方法取得了巨大进展。这些方法已成功地应用于广泛的领域,包括医学和生物学。虽然这些计算方法的发展取得了很大进展,但它们并不容易获得,效率不够高,也不容易被生物医学科学家使用,而且它们还没有被重新配置以利用越来越多的大数据进行分析。该中心将使这些方法广泛可用,在应用于大数据集时非常有效,并且易于使用。拟议中的中心将提供一套强大的概念和工具,加速发现和共享从非常庞大和复杂的生物医学数据集得出的因果知识。从这个卓越中心产生的方法和产品可能会对我们对健康和疾病的理解产生重大的积极影响,从而改善人类健康。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ivet Bahar其他文献
Ivet Bahar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ivet Bahar', 18)}}的其他基金
Toward a deeper understanding of allostery and allotargeting by computational approaches
通过计算方法更深入地理解变构和异体靶向
- 批准号:
10462594 - 财政年份:2021
- 资助金额:
$ 273万 - 项目类别:
Toward a deeper understanding of allostery and allotargeting by computational approaches
通过计算方法更深入地理解变构和异体靶向
- 批准号:
10231654 - 财政年份:2021
- 资助金额:
$ 273万 - 项目类别:
Toward a deeper understanding of allostery and allotargeting by computational approaches
通过计算方法更深入地理解变构和异体靶向
- 批准号:
10887238 - 财政年份:2021
- 资助金额:
$ 273万 - 项目类别:
Toward a deeper understanding of allostery and allotargeting by computational approaches
通过计算方法更深入地理解变构和异体靶向
- 批准号:
10612069 - 财政年份:2021
- 资助金额:
$ 273万 - 项目类别:
Structure and function of PTH class B GPCR
PTH B 类 GPCR 的结构和功能
- 批准号:
10657916 - 财政年份:2018
- 资助金额:
$ 273万 - 项目类别:
NIDA Center of Excellence OF Computational Drug Abuse Research (CDAR)
NIDA 计算药物滥用研究卓越中心 (CDAR)
- 批准号:
8896676 - 财政年份:2014
- 资助金额:
$ 273万 - 项目类别:
NIDA Center of Excellence OF Computational Drug Abuse Research (CDAR)
NIDA 计算药物滥用研究卓越中心 (CDAR)
- 批准号:
8743368 - 财政年份:2014
- 资助金额:
$ 273万 - 项目类别:
Center for causal Modeling and discovery of Biomedical Knowledge from Big Data
大数据因果建模和生物医学知识发现中心
- 批准号:
9404096 - 财政年份:2014
- 资助金额:
$ 273万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 273万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 273万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 273万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 273万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 273万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 273万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 273万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 273万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 273万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 273万 - 项目类别:
Research Grant