NIDA Center of Excellence OF Computational Drug Abuse Research (CDAR)
NIDA 计算药物滥用研究卓越中心 (CDAR)
基本信息
- 批准号:8743368
- 负责人:
- 金额:$ 109.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAreaBiologicalBiologyCannabinoidsCategoriesCellsChemicalsClinical Trials NetworkCloud ComputingCocaineCollaborationsCommunitiesComplementComputational BiologyComputer softwareConsultationsDataDatabasesDevelopmentDoctor of PhilosophyDrug abuseEffectivenessEndocytosisEnsureEnvironmental Risk FactorFeedbackFosteringFundingGeneticGenomeGenomicsGenotypeGoalsHuman GenomeInterventionInvestigationJointsLeadershipLinkMachine LearningMapsMentorsMethodsModelingMolecularN-Methyl-D-Aspartate ReceptorsNational Institute of Drug AbuseNeuropharmacologyPharmaceutical PreparationsPharmacologic SubstancePharmacologyPhenotypeProteinsRegulationResearchResearch ActivityResearch PersonnelResearch Project GrantsResearch SupportResourcesScienceSignal TransductionSoftware ToolsStructureSubstance Use DisorderSystemSystems BiologyTechnologyTherapeuticTrainingTranslatingTranslational ResearchUniversitiesaddictionbasebiobehaviorcheminformaticscloud basedcomputational chemistrycomputer sciencedata miningdesigndopamine transporterdrug abuse preventionepigenetic markerfallsgenome-wideimprovedinsightknowledge basemembernoveloperationpredictive modelingpreventprofessorreceptorrepositorytool
项目摘要
DESCRIPTION (provided by applicant):
We propose to establish a NIDA Center of Excellence for Computational Drug Abuse Research (CDAR) between the University of Pittsburgh (Pitt) and (CMU), with the goal of advancing and ensuring the productive and broad usage of state-of-the-art computational technologies that will facilitate and enhance drug abuse (DA) research, both in the local (Pittsburgh) area and nationwide. To this end, we will develop/integrate tools for DA-domain-specific chemical-to-protein-to-genomics mapping using cheminformatics, computational biology and computational genomics methods by centralizing computational chemical genomics (or chemogenomics) resources while also making them available on a cloud server. The Center will foster collaboration and advance knowledge-based translational research and increase the effectiveness of ongoing funded research project (FRPs) via the following Research Support Cores: (1) The Computational Chemogenomics Core for DA (CC4DA) will help address polydrug addiction/polypharmacology by developing new chemogenomics tools and by compiling the data collected/generated, along with those from other Cores, into a DA knowledge-based chemogenomics (DA-KB) repository that will be made accessible to the DA community. (2) The Computational Biology Core (CB4DA) will focus on developing a resource for structure-based investigation of the interactions among substances of DA and their target proteins, in addition to assessing the drugability of receptors and transporters involved in DA and addiction. These activities will be complemented by quantitative systems pharmacology methods to enable a systems-level approach to DA research. (3) The Computational Genomics Core (CG4DA) will carry out genome-wide discovery of new DA targets, markers, and epigenetic influences using developed machine learning models and algorithms. (4) The Administrative Core will coordinate Center activities, provide management to oversee the CDAR activities in consultation with the Scientific Steering Committee (SSC) and an External Advisory Board (EAB), ensure the effective dissemination of software/data among the Cores and the FRPs, and establish mentoring mechanisms to train junior researchers. Overall, the Center will strive to achieve the long-term goal of translating advances in computational chemistry, biology and genomics toward the development of novel personalized DA therapeutics.
描述(由申请人提供):
我们建议在匹兹堡大学(PITT)和(CMU)之间建立NIDA卓越的计算药物滥用研究(CDAR),目的是提高和确保在当地(Pittsburgh)和Nationwides和Nationwide的当地(PITTSBURGH)促进和增强药物滥用研究(DA)研究的最先进的计算技术。为此,我们将使用化学信息学,计算生物学和计算基因组学方法来开发/集成用于DA域特异性化学对蛋白质到基因组学的工具,通过集中计算化学基因组学(或化学基因组学)资源,同时还可以在云服务器上提供它们。该中心将通过以下研究支持核心促进和提高基于知识的转化研究,并提高正在进行的资助研究项目(FRP)的有效性:(1)DA(CC4DA)的计算化学基因组学核心(CC4DA)有助于解决多重毒/多药理学通过开发新的化学基因组学工具,并通过将新的化学基因组和DA DA型(DA DA DA)组成的(DA DA)与其他核心(DA DA)进行,DA DA的核心( DA社区将可以访问这一点。 (2)计算生物学核心(CB4DA)将重点放在开发基于结构的资源来研究DA及其靶蛋白之间的相互作用的资源,此外还评估了受体和转运蛋白的可药用性和成瘾的吸毒者的可药用性。这些活动将通过定量系统药理学方法来补充,以实现系统级研究的方法。 (3)计算基因组学核心(CG4DA)将使用开发的机器学习模型和算法对新的DA靶标,标记和表观遗传影响进行新的DA目标,标记和表观遗传影响。 (4)行政核心将协调中心的活动,提供管理与科学指导委员会(SSC)协商和外部顾问委员会(EAB)协商的管理活动,确保有效地传播软件/数据在核心和FRP中,并建立指导机制来培训初级研究人员。总体而言,该中心将努力实现将计算化学,生物学和基因组学方面的进步转化为新型个性化DA疗法发展的长期目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ivet Bahar其他文献
Ivet Bahar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ivet Bahar', 18)}}的其他基金
Toward a deeper understanding of allostery and allotargeting by computational approaches
通过计算方法更深入地理解变构和异体靶向
- 批准号:
10462594 - 财政年份:2021
- 资助金额:
$ 109.43万 - 项目类别:
Toward a deeper understanding of allostery and allotargeting by computational approaches
通过计算方法更深入地理解变构和异体靶向
- 批准号:
10231654 - 财政年份:2021
- 资助金额:
$ 109.43万 - 项目类别:
Toward a deeper understanding of allostery and allotargeting by computational approaches
通过计算方法更深入地理解变构和异体靶向
- 批准号:
10887238 - 财政年份:2021
- 资助金额:
$ 109.43万 - 项目类别:
Toward a deeper understanding of allostery and allotargeting by computational approaches
通过计算方法更深入地理解变构和异体靶向
- 批准号:
10612069 - 财政年份:2021
- 资助金额:
$ 109.43万 - 项目类别:
Structure and function of PTH class B GPCR
PTH B 类 GPCR 的结构和功能
- 批准号:
10657916 - 财政年份:2018
- 资助金额:
$ 109.43万 - 项目类别:
NIDA Center of Excellence OF Computational Drug Abuse Research (CDAR)
NIDA 计算药物滥用研究卓越中心 (CDAR)
- 批准号:
8896676 - 财政年份:2014
- 资助金额:
$ 109.43万 - 项目类别:
Center for causal Modeling and discovery of Biomedical Knowledge from Big Data
大数据因果建模和生物医学知识发现中心
- 批准号:
8935874 - 财政年份:2014
- 资助金额:
$ 109.43万 - 项目类别:
Center for causal Modeling and discovery of Biomedical Knowledge from Big Data
大数据因果建模和生物医学知识发现中心
- 批准号:
9404096 - 财政年份:2014
- 资助金额:
$ 109.43万 - 项目类别:
相似国自然基金
无界区域中非局部Klein-Gordon-Schrödinger方程的保结构算法研究
- 批准号:12301508
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
感兴趣区域驱动的主动式采样CT成像算法研究
- 批准号:62301532
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
面向多区域单元化生产线协同调度问题的自动算法设计研究
- 批准号:62303204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于深度强化学习的约束多目标群智算法及多区域热电调度应用
- 批准号:62303197
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向二氧化碳封存的高可扩展时空并行区域分解算法及其大规模应用
- 批准号:12371366
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 109.43万 - 项目类别:
Previvors Recharge: A Resilience Program for Cancer Previvors
癌症预防者恢复活力计划:癌症预防者恢复力计划
- 批准号:
10698965 - 财政年份:2023
- 资助金额:
$ 109.43万 - 项目类别:
A multicenter study in bronchoscopy combining Stimulated Raman Histology with Artificial intelligence for rapid lung cancer detection - The ON-SITE study
支气管镜检查结合受激拉曼组织学与人工智能快速检测肺癌的多中心研究 - ON-SITE 研究
- 批准号:
10698382 - 财政年份:2023
- 资助金额:
$ 109.43万 - 项目类别:
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
- 批准号:
10656110 - 财政年份:2023
- 资助金额:
$ 109.43万 - 项目类别:
HEAR-HEARTFELT (Identifying the risk of Hospitalizations or Emergency depARtment visits for patients with HEART Failure in managed long-term care through vErbaL communicaTion)
倾听心声(通过口头交流确定长期管理护理中的心力衰竭患者住院或急诊就诊的风险)
- 批准号:
10723292 - 财政年份:2023
- 资助金额:
$ 109.43万 - 项目类别: