NIDA Center of Excellence OF Computational Drug Abuse Research (CDAR)
NIDA 计算药物滥用研究卓越中心 (CDAR)
基本信息
- 批准号:8743368
- 负责人:
- 金额:$ 109.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAreaBiologicalBiologyCannabinoidsCategoriesCellsChemicalsClinical Trials NetworkCloud ComputingCocaineCollaborationsCommunitiesComplementComputational BiologyComputer softwareConsultationsDataDatabasesDevelopmentDoctor of PhilosophyDrug abuseEffectivenessEndocytosisEnsureEnvironmental Risk FactorFeedbackFosteringFundingGeneticGenomeGenomicsGenotypeGoalsHuman GenomeInterventionInvestigationJointsLeadershipLinkMachine LearningMapsMentorsMethodsModelingMolecularN-Methyl-D-Aspartate ReceptorsNational Institute of Drug AbuseNeuropharmacologyPharmaceutical PreparationsPharmacologic SubstancePharmacologyPhenotypeProteinsRegulationResearchResearch ActivityResearch PersonnelResearch Project GrantsResearch SupportResourcesScienceSignal TransductionSoftware ToolsStructureSubstance Use DisorderSystemSystems BiologyTechnologyTherapeuticTrainingTranslatingTranslational ResearchUniversitiesaddictionbasebiobehaviorcheminformaticscloud basedcomputational chemistrycomputer sciencedata miningdesigndopamine transporterdrug abuse preventionepigenetic markerfallsgenome-wideimprovedinsightknowledge basemembernoveloperationpredictive modelingpreventprofessorreceptorrepositorytool
项目摘要
DESCRIPTION (provided by applicant):
We propose to establish a NIDA Center of Excellence for Computational Drug Abuse Research (CDAR) between the University of Pittsburgh (Pitt) and (CMU), with the goal of advancing and ensuring the productive and broad usage of state-of-the-art computational technologies that will facilitate and enhance drug abuse (DA) research, both in the local (Pittsburgh) area and nationwide. To this end, we will develop/integrate tools for DA-domain-specific chemical-to-protein-to-genomics mapping using cheminformatics, computational biology and computational genomics methods by centralizing computational chemical genomics (or chemogenomics) resources while also making them available on a cloud server. The Center will foster collaboration and advance knowledge-based translational research and increase the effectiveness of ongoing funded research project (FRPs) via the following Research Support Cores: (1) The Computational Chemogenomics Core for DA (CC4DA) will help address polydrug addiction/polypharmacology by developing new chemogenomics tools and by compiling the data collected/generated, along with those from other Cores, into a DA knowledge-based chemogenomics (DA-KB) repository that will be made accessible to the DA community. (2) The Computational Biology Core (CB4DA) will focus on developing a resource for structure-based investigation of the interactions among substances of DA and their target proteins, in addition to assessing the drugability of receptors and transporters involved in DA and addiction. These activities will be complemented by quantitative systems pharmacology methods to enable a systems-level approach to DA research. (3) The Computational Genomics Core (CG4DA) will carry out genome-wide discovery of new DA targets, markers, and epigenetic influences using developed machine learning models and algorithms. (4) The Administrative Core will coordinate Center activities, provide management to oversee the CDAR activities in consultation with the Scientific Steering Committee (SSC) and an External Advisory Board (EAB), ensure the effective dissemination of software/data among the Cores and the FRPs, and establish mentoring mechanisms to train junior researchers. Overall, the Center will strive to achieve the long-term goal of translating advances in computational chemistry, biology and genomics toward the development of novel personalized DA therapeutics.
描述(由申请人提供):
我们建议在匹兹堡大学(皮特)和(CMU)之间建立一个NIDA计算药物滥用研究卓越中心(CDAR),其目标是推进和确保最先进的计算技术的生产和广泛使用,这将促进和加强药物滥用(DA)研究,无论是在当地(匹兹堡)地区还是全国范围内。为此,我们将开发/集成工具DA域特定的化学-蛋白质-基因组学映射使用化学信息学,计算生物学和计算基因组学方法,通过集中计算化学基因组学(或化学基因组学)资源,同时也使它们在云服务器上可用。该中心将通过以下研究支持核心促进合作和推进基于知识的转化研究,并提高正在进行的资助研究项目(FRP)的有效性:(1)DA计算化学基因组学核心(CC 4DA)将通过开发新的化学基因组学工具和汇编收集/生成的数据,沿着其他核心的数据,帮助解决多种药物成瘾/多种药理学问题。进入一个DA知识为基础的化学基因组学(DA-KB)库,将访问DA社区。(2)计算生物学核心(CB 4DA)将专注于开发一种资源,用于对DA物质及其靶蛋白之间的相互作用进行基于结构的研究,以及评估参与DA和成瘾的受体和转运蛋白的可药性。这些活动将通过定量系统药理学方法进行补充,以实现DA研究的系统级方法。(3)计算基因组学核心(CG 4DA)将使用开发的机器学习模型和算法在全基因组范围内发现新的DA靶点、标记和表观遗传影响。(4)行政核心将协调中心的活动,提供管理,以监督CDAR活动与科学指导委员会(SSC)和外部咨询委员会(EAB)协商,确保软件/数据在核心和FRP之间的有效传播,并建立指导机制以培训初级研究人员。总体而言,该中心将努力实现将计算化学,生物学和基因组学的进步转化为新型个性化DA治疗方法的长期目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ivet Bahar其他文献
Ivet Bahar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ivet Bahar', 18)}}的其他基金
Toward a deeper understanding of allostery and allotargeting by computational approaches
通过计算方法更深入地理解变构和异体靶向
- 批准号:
10462594 - 财政年份:2021
- 资助金额:
$ 109.43万 - 项目类别:
Toward a deeper understanding of allostery and allotargeting by computational approaches
通过计算方法更深入地理解变构和异体靶向
- 批准号:
10231654 - 财政年份:2021
- 资助金额:
$ 109.43万 - 项目类别:
Toward a deeper understanding of allostery and allotargeting by computational approaches
通过计算方法更深入地理解变构和异体靶向
- 批准号:
10887238 - 财政年份:2021
- 资助金额:
$ 109.43万 - 项目类别:
Toward a deeper understanding of allostery and allotargeting by computational approaches
通过计算方法更深入地理解变构和异体靶向
- 批准号:
10612069 - 财政年份:2021
- 资助金额:
$ 109.43万 - 项目类别:
Structure and function of PTH class B GPCR
PTH B 类 GPCR 的结构和功能
- 批准号:
10657916 - 财政年份:2018
- 资助金额:
$ 109.43万 - 项目类别:
NIDA Center of Excellence OF Computational Drug Abuse Research (CDAR)
NIDA 计算药物滥用研究卓越中心 (CDAR)
- 批准号:
8896676 - 财政年份:2014
- 资助金额:
$ 109.43万 - 项目类别:
Center for causal Modeling and discovery of Biomedical Knowledge from Big Data
大数据因果建模和生物医学知识发现中心
- 批准号:
8935874 - 财政年份:2014
- 资助金额:
$ 109.43万 - 项目类别:
Center for causal Modeling and discovery of Biomedical Knowledge from Big Data
大数据因果建模和生物医学知识发现中心
- 批准号:
9404096 - 财政年份:2014
- 资助金额:
$ 109.43万 - 项目类别:
相似海外基金
Approximate algorithms and architectures for area efficient system design
区域高效系统设计的近似算法和架构
- 批准号:
LP170100311 - 财政年份:2018
- 资助金额:
$ 109.43万 - 项目类别:
Linkage Projects
AMPS: Rank Minimization Algorithms for Wide-Area Phasor Measurement Data Processing
AMPS:用于广域相量测量数据处理的秩最小化算法
- 批准号:
1736326 - 财政年份:2017
- 资助金额:
$ 109.43万 - 项目类别:
Standard Grant
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2017
- 资助金额:
$ 109.43万 - 项目类别:
Discovery Grants Program - Individual
Rigorous simulation of speckle fields caused by large area rough surfaces using fast algorithms based on higher order boundary element methods
使用基于高阶边界元方法的快速算法对大面积粗糙表面引起的散斑场进行严格模拟
- 批准号:
375876714 - 财政年份:2017
- 资助金额:
$ 109.43万 - 项目类别:
Research Grants
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2016
- 资助金额:
$ 109.43万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2015
- 资助金额:
$ 109.43万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2014
- 资助金额:
$ 109.43万 - 项目类别:
Discovery Grants Program - Individual
AREA: Optimizing gene expression with mRNA free energy modeling and algorithms
区域:利用 mRNA 自由能建模和算法优化基因表达
- 批准号:
8689532 - 财政年份:2014
- 资助金额:
$ 109.43万 - 项目类别:
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Monitoring of Power Systems
CPS:协同:协作研究:用于电力系统广域监控的分布式异步算法和软件系统
- 批准号:
1329780 - 财政年份:2013
- 资助金额:
$ 109.43万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Mentoring of Power Systems
CPS:协同:协作研究:用于电力系统广域指导的分布式异步算法和软件系统
- 批准号:
1329745 - 财政年份:2013
- 资助金额:
$ 109.43万 - 项目类别:
Standard Grant