Statistical Methods for Incorporating Machine Learning Tools in Inference and Large-Scale Surveillance using Electronic Medical Records Data
使用电子病历数据将机器学习工具纳入推理和大规模监控的统计方法
基本信息
- 批准号:10463566
- 负责人:
- 金额:$ 48.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-18 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsBenefits and RisksCharacteristicsClinical DataComplexComputer softwareComputerized Medical RecordConfidence IntervalsCountryDataData CollectionData SetDetectionDimensionsE-learningEarly DiagnosisEffectivenessElectronic Health RecordEnsureEpidemiologyEstimation TechniquesEventFrequenciesGoalsHealthHealthcareHeterogeneityInformation SystemsInfrastructureInterventionKnowledgeLearningLinkMachine LearningMeasuresMethodologyMethodsModernizationMonitorOutcomePatient-Focused OutcomesPatientsPharmacodynamicsPopulationPopulation SurveillanceProceduresPublic HealthRecordsReproducibilityResearchResearch MethodologyResearch PersonnelSafetySentinelSignal TransductionStandardizationStatistical MethodsStreamStructural ModelsSubgroupSurveillance ProgramSystemTechniquesTestingTimeTreatment outcomeUpdatebaseclinical carecomparative treatmentdata streamsflexibilityhigh dimensionalityimplementation barriersimprovedinterestmachine learning methodnational surveillancenovelopen sourcepatient populationpatient subsetsrisk minimizationsoftware developmentsurveillance datatooltreatment effectuser-friendly
项目摘要
SUMMARY
The modernization and standardization of clinical care information systems is creating large networks of
linked electronic health records (EHR) that capture key treatments and select patient outcomes for
millions of patients throughout the country. The observational data emerging from these systems
provide an unparalleled opportunity to learn about the effectiveness of existing and novel treatments,
and to monitor potential safety issues that may arise when interventions are used in broad patient
populations. However, observational clinical data have exposures that are driven by many factors and
therefore aggressive adjustment is needed to remove as much confounding bias as possible in order to
make attribution regarding select exposures. The field of machine learning provides a powerful
collection of data-driven approaches for performing flexible, thorough confounding adjustment, but
performing reliable statistical inference is particularly challenging when these techniques are used as
part of the analytic strategy. We propose to advance reproducible research methods by developing and
illustrating novel targeted learning tools that leverage the flexibility of machine learning methods to
detect and characterize health effect signals using large-scale EHR data.
Specifically, we will first develop techniques for making efficient, statistically valid and robust inference
for treatment effects using state-of-the-art machine learning tools. We will also develop online learning
techniques to make such inference in the context of streaming EHR data. Methodological advances will
enable us to formulate a formal, rigorous and practical framework for conducting continuous, effective
and reliable surveillance for safety endpoints. Finally, we will develop statistical approaches for
incorporating prior information -- including demographic, epidemiologic or pharmacodynamic
knowledge, for example -- to improve health effect estimation and inference when the health outcome
of interest is rare and the statistical problem is thus difficult, as often occurs in safety surveillance.
The ultimate goal of the proposed research is to enable biomedical researchers and public health
regulators to carefully monitor and protect the health of the public by allowing them to more effectively
and more reliably detect critical health effect signals that may be contained in population-scale EHR
data.
总结
临床护理信息系统的现代化和标准化正在创建大型的
链接的电子健康记录(EHR),用于捕获关键治疗并选择患者结果,
全国数百万患者。从这些系统中得到的观测数据
提供了一个无与伦比的机会来了解现有的和新的治疗方法的有效性,
并监测在广泛患者中使用干预措施时可能出现的潜在安全性问题
人口。然而,观察性临床数据的暴露受许多因素驱动,
因此,需要进行积极的调整,以尽可能多地消除混杂偏倚,
对选定的风险进行归因。机器学习领域提供了一个强大的
收集数据驱动的方法,以进行灵活,彻底的混杂调整,但
当这些技术被用作
分析战略的一部分。我们建议通过开发和改进可重复的研究方法,
说明了利用机器学习方法的灵活性来
使用大规模EHR数据检测和表征健康影响信号。
具体来说,我们将首先开发技术,使有效的,统计上有效的和强大的推理
使用最先进的机器学习工具来评估治疗效果我们还将发展在线学习
技术,使这样的推理在流EHR数据的上下文中。方法上的进步将
使我们能够制定一个正式、严格和切实可行的框架,
并对安全性终点进行可靠的监测。最后,我们将开发统计方法,
结合先前信息-包括人口统计学、流行病学或药效学
知识,例如-以改善健康影响的估计和推断时,健康结果
感兴趣的是罕见的,因此统计问题是困难的,因为经常发生在安全监督。
拟议研究的最终目标是使生物医学研究人员和公共卫生
监管机构仔细监测和保护公众的健康,让他们更有效地
并且更可靠地检测可能包含在人群规模EHR中的关键健康影响信号
数据
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marco Carone其他文献
Marco Carone的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marco Carone', 18)}}的其他基金
Statistical Methods for Incorporating Machine Learning Tools in Inference and Large-Scale Surveillance using Electronic Medical Records Data
使用电子病历数据将机器学习工具纳入推理和大规模监控的统计方法
- 批准号:
9816009 - 财政年份:2019
- 资助金额:
$ 48.63万 - 项目类别:
Statistical Methods for Incorporating Machine Learning Tools in Inference and Large-Scale Surveillance using Electronic Medical Records Data
使用电子病历数据将机器学习工具纳入推理和大规模监控的统计方法
- 批准号:
9979940 - 财政年份:2019
- 资助金额:
$ 48.63万 - 项目类别:
Statistical Methods for Incorporating Machine Learning Tools in Inference and Large-Scale Surveillance using Electronic Medical Records Data
使用电子病历数据将机器学习工具纳入推理和大规模监控的统计方法
- 批准号:
10645177 - 财政年份:2019
- 资助金额:
$ 48.63万 - 项目类别:
Statistical Methods for Incorporating Machine Learning Tools in Inference and Large-Scale Surveillance using Electronic Medical Records Data
使用电子病历数据将机器学习工具纳入推理和大规模监控的统计方法
- 批准号:
10206237 - 财政年份:2019
- 资助金额:
$ 48.63万 - 项目类别:
相似海外基金
EPIC-Oxford: benefits and risks of plant-based diets
EPIC-Oxford:植物性饮食的好处和风险
- 批准号:
MR/Y013662/1 - 财政年份:2024
- 资助金额:
$ 48.63万 - 项目类别:
Research Grant
HYDRA: Hydrogen Economy Benefits and Risks: Tools Development and Policies Implementation to Mitigate Possible Climate Impacts
HYDRA:氢经济的好处和风险:减轻可能的气候影响的工具开发和政策实施
- 批准号:
10089618 - 财政年份:2023
- 资助金额:
$ 48.63万 - 项目类别:
EU-Funded
Coldfish: potential benefits and risks of borealisation for fish stocks and ecosystems in a changing Arctic Ocean
冷鱼:北冰洋变化中鱼类种群和生态系统的北化的潜在好处和风险
- 批准号:
NE/R012520/1 - 财政年份:2018
- 资助金额:
$ 48.63万 - 项目类别:
Research Grant
Coldfish: potential benefits and risks of borealisation for fish stocks and ecosystems in a changing Arctic Ocean
冷鱼:北冰洋变化中鱼类种群和生态系统的北化的潜在好处和风险
- 批准号:
NE/R012563/1 - 财政年份:2018
- 资助金额:
$ 48.63万 - 项目类别:
Research Grant
The use of big data for social policy: benefits and risks
大数据在社会政策中的应用:好处和风险
- 批准号:
LA170100011 - 财政年份:2017
- 资助金额:
$ 48.63万 - 项目类别:
Learned Academies Special Projects
Long-term Benefits and Risks of Bariatric Surgery in Integrated Care Systems
综合护理系统中减肥手术的长期益处和风险
- 批准号:
9329410 - 财政年份:2015
- 资助金额:
$ 48.63万 - 项目类别:
Long-term Benefits and Risks of Bariatric Surgery in Integrated Care Systems
综合护理系统中减肥手术的长期益处和风险
- 批准号:
9136837 - 财政年份:2015
- 资助金额:
$ 48.63万 - 项目类别:
Long-term Benefits and Risks of Bariatric Surgery in Integrated Care Systems
综合护理系统中减肥手术的长期益处和风险
- 批准号:
8940898 - 财政年份:2015
- 资助金额:
$ 48.63万 - 项目类别:
Characterizing and Communicating Uncertainty in the Assessment of Benefits and Risks of Pharmaceuticals: An IOM Workshop
描述和传达药品效益和风险评估中的不确定性:IOM 研讨会
- 批准号:
8996009 - 财政年份:2015
- 资助金额:
$ 48.63万 - 项目类别:
ADOLESCENT BARIATRICS ASSESSING HEALTH BENEFITS AND RISKS
青少年肥胖症患者评估健康益处和风险
- 批准号:
8356702 - 财政年份:2010
- 资助金额:
$ 48.63万 - 项目类别:














{{item.name}}会员




