Origins of Brain Somatic Mosaicism in Developmental Brain Disease

发育性脑疾病中脑体细胞嵌合的起源

基本信息

  • 批准号:
    10466904
  • 负责人:
  • 金额:
    $ 31.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-10 至 2026-05-31
  • 项目状态:
    未结题

项目摘要

Abstract Brain somatic mosaicism (BSM) refers to the accumulation of mutations within any of the billions of cells in the human brain, which can occur from embryogenesis through adulthood. The extent, impact and mechanisms of BSM on brain disease remain poorly understood. Prior work from the Brain Somatic Mosaicism Network (BSMN), on which the PI served, made critical breakthroughs in reliability of mosaicism detection, but also raised new questions, including the degree to which BSM exists in the healthy brain, and the mechanisms by which BSM mutations explain disease. Focal cortical dysplasia (FCD) is associated with substantial neuropsychiatric disability, and is the most common cause of intractable epilepsy in childhood. Neuropsychiatric features are seen in 15-59% of patients 5-7, and neuropathologically shows disrupted neurogenesis, migration, differentiation, and altered neural excitability. We and others previously identified mosaic mutations in the mTOR pathway in a minority of FCD cases, but most cases remain unsolved, and fundamental mechanisms are lacking. We hypothesize that: 1] FCD mutations are similar to neutral somatic mutations in their patterns and distributions, dictated by developmental processes, but differ in their functional effect. 2] BSM patterns, allelic fractions (AFs) and allele sharing between cells can reconstruct cellular lineages and migratory histories. 3] Study of FCD resected tissue can uncover novel causes of disease that would not be tolerated if present in every cell. 4] BSM modeling in mouse can unravel disrupted signaling networks of complex mosaic mutations. Our preliminary data shows: 1] From a post-mortem control cadaver, we validated 259 somatic variants using 300X genome sequencing, and started to use these variants as ‘barcodes’ to reconstruct lineage histories. 2] Deep sequencing from 314 FCD patient brain resections identified 12 new candidate genes, highlighting signaling and synaptic dysfunction, and a novel ‘two-hit’ disease mechanisms. 3] We established in utero mouse electroporation models to assess putative FCD variants as gain or loss of function, and to assess effects of ‘single-hit’ and ‘two-hit’ mutations. We propose three aims: 1] From control cadavers, we will reconstruct cell lineage across anatomical domains using BSM as barcodes. 2] With this lineage information, we will study the origins of BSM mutations in FCD, by recruiting new patients, performing both targeted and unbiased sequencing, and identifying novel causes. 3] We will functionally validate putative deleterious alleles in animal models for both ‘single-hit’ and ‘two-hit’ causes. The goal is to achieve a mechanistic understanding of the extent of BSM in control individuals, to reconstruct neural lineages and to identify novel mechanisms in developmental brain disease.
抽象的 脑体细胞嵌合体(BSM)是指大脑中数十亿个细胞中任何一个细胞内突变的积累。 人类大脑,可以从胚胎发生一直到成年。范围、影响和 BSM 对脑部疾病的机制仍知之甚少。脑体细胞之前的工作 PI服务的Mosaicism Network(BSMN)在马赛克可靠性方面取得重大突破 检测,但也提出了新的问题,包括 BSM 在健康大脑中存在的程度,以及 BSM 突变解释疾病的机制。 局灶性皮质发育不良 (FCD) 与严重的神经精神障碍有关,是 儿童顽固性癫痫的最常见原因。 15-59% 的人存在神经精神特征 患者 5-7,神经病理学显示神经发生、迁移、分化受到破坏,并且发生改变 神经兴奋性。我们和其他人之前发现了少数人 mTOR 通路中的嵌合突变 FCD 案件数量众多,但大多数案件仍未解决,且缺乏基本机制。 我们假设: 1] FCD 突变在模式上与中性体细胞突变相似,并且 分布由发育过程决定,但其功能效果不同。 2] BSM 模式,等位基因 细胞之间的分数(AF)和等位基因共享可以重建细胞谱系和迁移历史。 3] 对 FCD 切除组织的研究可以发现新的疾病原因,如果这些原因存在于 FCD 中,则无法耐受 每个细胞。 4] 小鼠 BSM 建模可以解开复杂嵌合突变中断的信号网络。 我们的初步数据显示: 1] 从尸检对照尸体中,我们验证了 259 例体细胞 使用 300X 基因组测序发现变体,并开始使用这些变体作为“条形码”来重建 血统历史。 2] 对 314 例 FCD 患者脑切除的深度测序确定了 12 个新候选者 基因,突出信号传导和突触功能障碍,以及一种新的“二次打击”疾病机制。 3]我们 在子宫小鼠电穿孔模型中建立,以评估假定的 FCD 变异作为功能的获得或丧失, 并评估“单次打击”和“两次打击”突变的影响。 我们提出三个目标:1]从对照尸体中,我们将重建跨解剖学的细胞谱系 使用 BSM 作为条形码的域。 2]有了这些谱系信息,我们将研究BSM的起源 FCD 突变,通过招募新患者、进行靶向和无偏测序,以及 找出新的原因。 3]我们将在动物模型中对假定的有害等位基因进行功能验证 “单击”和“双击”都有原因。目标是实现对 控制个体中 BSM 的程度,以重建神经谱系并识别新机制 发育性脑疾病。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JOSEPH G GLEESON其他文献

JOSEPH G GLEESON的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JOSEPH G GLEESON', 18)}}的其他基金

University of California San Diego Neuroscience Microscopy Imaging Core
加州大学圣地亚哥分校神经科学显微成像核心
  • 批准号:
    10524688
  • 财政年份:
    2021
  • 资助金额:
    $ 31.25万
  • 项目类别:
Origins of Brain Somatic Mosaicism in Developmental Brain Disease
发育性脑疾病中脑体细胞嵌合的起源
  • 批准号:
    10299502
  • 财政年份:
    2021
  • 资助金额:
    $ 31.25万
  • 项目类别:
Origins of Brain Somatic Mosaicism in Developmental Brain Disease
发育性脑疾病中脑体细胞嵌合的起源
  • 批准号:
    10669715
  • 财政年份:
    2021
  • 资助金额:
    $ 31.25万
  • 项目类别:
Project I - Human genetics of meningomyelocele and risk mitigation by folic acid
项目 I - 脑膜脊髓膨出的人类遗传学和叶酸降低风险
  • 批准号:
    10300070
  • 财政年份:
    2020
  • 资助金额:
    $ 31.25万
  • 项目类别:
Developmental Mechanisms of Human Meningomyelocele
人类脑膜脊髓膨出的发生机制
  • 批准号:
    10533735
  • 财政年份:
    2020
  • 资助金额:
    $ 31.25万
  • 项目类别:
Developmental Mechanisms of Human Meningomyelocele
人类脑膜脊髓膨出的发生机制
  • 批准号:
    10300066
  • 财政年份:
    2020
  • 资助金额:
    $ 31.25万
  • 项目类别:
Core A - Administrative Core
核心 A - 行政核心
  • 批准号:
    10533736
  • 财政年份:
    2020
  • 资助金额:
    $ 31.25万
  • 项目类别:
Developmental Mechanisms of Human Meningomyelocele
人类脑膜脊髓膨出的发生机制
  • 批准号:
    10154461
  • 财政年份:
    2020
  • 资助金额:
    $ 31.25万
  • 项目类别:
Core A - Administrative Core
核心 A - 行政核心
  • 批准号:
    10154462
  • 财政年份:
    2020
  • 资助金额:
    $ 31.25万
  • 项目类别:
Core A - Administrative Core
核心 A - 行政核心
  • 批准号:
    10300067
  • 财政年份:
    2020
  • 资助金额:
    $ 31.25万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 31.25万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 31.25万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 31.25万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 31.25万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 31.25万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 31.25万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 31.25万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 31.25万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 31.25万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 31.25万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了