Emerging Technologies & Data Analytics Core
新兴技术
基本信息
- 批准号:10469415
- 负责人:
- 金额:$ 26.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-15 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsAreaAuthorization documentationBehavior TherapyBehavioralBehavioral SciencesCharacteristicsCollaborationsCommunitiesComputer softwareConsultDataData AnalyticsData SetDevelopmentDisciplineDissemination and ImplementationDoctor of PhilosophyEducational workshopEmerging TechnologiesEthicsEvaluationFacultyFoundationsGoalsGrantGuidelinesHomeIndividualInternationalInterventionLeadLearningLibrariesLicensingMeasuresMental HealthMentorsMethodsPaperPhenotypePhysiologicalPilot ProjectsPostdoctoral FellowProcessPublishingResearchResearch PersonnelResearch SupportResource SharingResourcesScientistSeriesStudentsSubstance Use DisorderTechnologyTimeUnderrepresented PopulationsVisualizationadaptive interventionanalytical methodbasebehavioral healthcontextual factorscostdata sharingdesigndigitaldigital treatmenteffective interventionfaculty communityimplementation scienceindustry partnerinnovationinterdisciplinary collaborationmultimodal datanew technologynovelnovel strategiespersonalized interventionphysical conditioningranpirnasesensorsensor technologystudent trainingsubstance use treatmentterabytetherapy developmentuser centered design
项目摘要
EMERGING TECHNOLOGY AND DATA ANALYTICS PROJECT SUMMARY
The science of behavioral health, and the development of effective interventions in behavioral health, are
increasingly supported by a range of technologies – from sensors that measure physiological conditions and
contextual factors, to algorithms that infer (and predict) an individual’s receptivity to an intervention in the
moment, to analytics that infer behavioral characteristics or individual phenotypes, to real-time classifiers that
drive just-in-time adaptive interventions, to analytic methods to statistically understand multimodal datasets, to
visualizations that sift through terabytes of sensor data, to user-centric design processes that lead to novel
interfaces that are acceptable and usable. Faculty affiliated with the CTBH Emerging Technologies and Data
Analytics Core (ETDA Core), which launched in the last P30 renewal period, have the expertise to address all
these components in this spectrum of foundational technologies.
In this P30 Center renewal application, the ETDA Core will enhance educational and research opportunities
focused on the application of emerging technologies and data analytics to the development and evaluation of
digital therapeutics. The Core will continue our current activities, including expanding the ETDA Core
community, promoting reciprocal learning, assisting with the seminar series, supporting the shared resources
developed during the current P30 period, providing expert consulting, and engaging with the Pilot Core to
sponsor Pilot RFAs that encourage and enable collaborations between ETDA-Core affiliates and CTBH
behavioral scientists. And, the Core will launch new activities, including hosting a tutorial series, contributing to
several research cross-Core workshops, sponsoring a trainee lunch series, expanding its expert consulting,
expanding industry partnerships, expanding international collaborations, addressing challenges of scale,
supporting research aimed at personalized interventions, supporting research on transdiagnostic mechanisms
and interventions, supporting activities related to digital ethics, and expanding efforts to increase inclusion of
underrepresented populations.
The ETDA Core will also support shared resources among our interdisciplinary Center team to enhance the
pace of development, and resulting potency, of digital therapeutics. To this end, the Core will maintain and
expand its pool of shared hardware, maintain and expand its set of group licenses for specialized software,
maintain and refine its home-grown software libraries, develop guidelines and best practices for effective user-
centered design of behavioral interventions, seek permission to obtain and share data sets, and further
develop its staff’s expertise in the creation and management of technology fundamental to operating robust
and scalable behavioral-health studies.
新兴技术和数据分析项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lisa A. Marsch其他文献
Barreras de acceso, autoreconocimiento y reconocimiento en depresión y trastornos del consumo del alcohol: un estudio cualitativo
- DOI:
10.1016/j.rcp.2020.11.021 - 发表时间:
2021-06-01 - 期刊:
- 影响因子:
- 作者:
Carlos Gómez-Restrepo;Paula Cárdenas;Arturo Marroquín-Rivera;Magda Cepeda;Fernando Suárez-Obando;José Miguel Uribe-Restrepo;Sergio Castro;Leonardo Cubillos;William C. Torrey;Sophia M. Bartels;Catherine Van Arcken-Martínez;Sena Park;Deepak John;Lisa A. Marsch - 通讯作者:
Lisa A. Marsch
Is telemedicine the answer to rural expansion of medication treatment for opioid use disorder? Early experiences in the feasibility study phase of a National Drug Abuse Treatment Clinical Trials Network Trial
- DOI:
10.1186/s13722-021-00233-x - 发表时间:
2021-04-20 - 期刊:
- 影响因子:3.200
- 作者:
Yih-Ing Hser;Allison J. Ober;Alex R. Dopp;Chunqing Lin;Katie P. Osterhage;Sarah E. Clingan;Larissa J. Mooney;Megan E. Curtis;Lisa A. Marsch;Bethany McLeman;Emily Hichborn;Laurie S. Lester;Laura-Mae Baldwin;Yanping Liu;Petra Jacobs;Andrew J. Saxon - 通讯作者:
Andrew J. Saxon
Relación entre las características sociodemográficas de los participantes del proyecto DIADA y la tasa de cumplimiento al seguimiento en la fase inicial de la intervención
- DOI:
10.1016/j.rcp.2020.11.019 - 发表时间:
2021-06-01 - 期刊:
- 影响因子:
- 作者:
María Paula Cárdenas Charry;Maria Paula Jassir Acosta;José Miguel Uribe Restrepo;Magda Cepeda;Pablo Martínez Camblor;Leonardo Cubillos;Sophia M. Bartels;Sergio Castro;Lisa A. Marsch;Carlos Gómez-Restrepo - 通讯作者:
Carlos Gómez-Restrepo
Comparative efficacy of a computer-based HIV testing video intervention in sites of varying HIV prevalence
- DOI:
10.1016/j.drugalcdep.2014.09.040 - 发表时间:
2015-01-01 - 期刊:
- 影响因子:
- 作者:
Ian D. Aronson;Sonali Rajan;Lisa A. Marsch;Juline Koken;Theodore Bania - 通讯作者:
Theodore Bania
Caracterización de los usuarios de las redes sociales dentro del sistema de atención primaria en Colombia y predictores de su uso de las redes sociales para comprender su salud
- DOI:
10.1016/j.rcp.2020.12.010 - 发表时间:
2021-06-01 - 期刊:
- 影响因子:
- 作者:
Sophia M. Bartels;Pablo Martinez-Camblor;John A. Naslund;Fernando Suárez-Obando;William C. Torrey;Leonardo Cubillos;Makeda J. Williams;Sergio M. Castro;José M. Uribe-Restrepo;Carlos Gómez-Restrepo;Lisa A. Marsch - 通讯作者:
Lisa A. Marsch
Lisa A. Marsch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lisa A. Marsch', 18)}}的其他基金
Technology-based Treatments for Substance Use Disorders
基于技术的药物使用障碍治疗
- 批准号:
10268734 - 财政年份:2021
- 资助金额:
$ 26.38万 - 项目类别:
相似海外基金
Approximate algorithms and architectures for area efficient system design
区域高效系统设计的近似算法和架构
- 批准号:
LP170100311 - 财政年份:2018
- 资助金额:
$ 26.38万 - 项目类别:
Linkage Projects
AMPS: Rank Minimization Algorithms for Wide-Area Phasor Measurement Data Processing
AMPS:用于广域相量测量数据处理的秩最小化算法
- 批准号:
1736326 - 财政年份:2017
- 资助金额:
$ 26.38万 - 项目类别:
Standard Grant
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2017
- 资助金额:
$ 26.38万 - 项目类别:
Discovery Grants Program - Individual
Rigorous simulation of speckle fields caused by large area rough surfaces using fast algorithms based on higher order boundary element methods
使用基于高阶边界元方法的快速算法对大面积粗糙表面引起的散斑场进行严格模拟
- 批准号:
375876714 - 财政年份:2017
- 资助金额:
$ 26.38万 - 项目类别:
Research Grants
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2016
- 资助金额:
$ 26.38万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2015
- 资助金额:
$ 26.38万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2014
- 资助金额:
$ 26.38万 - 项目类别:
Discovery Grants Program - Individual
AREA: Optimizing gene expression with mRNA free energy modeling and algorithms
区域:利用 mRNA 自由能建模和算法优化基因表达
- 批准号:
8689532 - 财政年份:2014
- 资助金额:
$ 26.38万 - 项目类别:
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Monitoring of Power Systems
CPS:协同:协作研究:用于电力系统广域监控的分布式异步算法和软件系统
- 批准号:
1329780 - 财政年份:2013
- 资助金额:
$ 26.38万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Mentoring of Power Systems
CPS:协同:协作研究:用于电力系统广域指导的分布式异步算法和软件系统
- 批准号:
1329745 - 财政年份:2013
- 资助金额:
$ 26.38万 - 项目类别:
Standard Grant














{{item.name}}会员




