Dense life-log health analytics from wearable senors using functional analysis and Riemannian geometry
使用功能分析和黎曼几何对可穿戴传感器进行密集生命日志健康分析
基本信息
- 批准号:10475017
- 负责人:
- 金额:$ 31.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-23 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerometerAddressAdoptedAlgorithmic SoftwareAlgorithmsBehavior monitoringBehavioralBig DataCellular PhoneClassificationCoupledDataData AnalysesDevelopmentDevicesDiabetes MellitusElementsGenerationsGeometryGoalsGrowthHarvestHealthHomeHourHuman ActivitiesInterventionLifeLocationMachine LearningMathematicsMeasurementModelingObservational StudyOutcomePatternPeriodicityPhysical activityProcessRegimenResearchResearch ActivitySamplingSeriesStrokeTechniquesTechnologyTimeWorkbaseheart rate monitorimprovedinnovationinsightinterdisciplinary approachmachine learning algorithmmathematical algorithmmathematical sciencesmultimodalitysensorsignal processingstatisticstoolwearable device
项目摘要
The growth and acceptance of wearable devices (e.g., accelerometers) and personal technologies (e.g.,
smartphones), coupled with larger storage capacities, waterproofing, and more unobtrusive wear locations, has
made long-term monitoring of behaviors throughout the 24-hour spectrum more feasible. Wearable devices
relevant for human activity (e.g., GENEActiv accelerometer) contain several complementary sensors
(accelerometers, gyro, heart- rate monitor etc.) and sample at high rates (e.g., 100Hz for accelerometer). These
high-sampling rates and the long duration of capture result in life-log data that truly qualifies as multimodal and
big time-series data. The challenges and opportunities involved in fully harvesting these types of data, for widely
applicable interventions, suggest that an interdisciplinary approach spanning mathematical sciences, signal
processing, and health is needed. Our innovation includes the use of functional-data analysis tools to represent
and process the dense time-series data. Functional data analysis is then integrated into machine learning and
pattern discovery algorithms for activity classification, prediction of attributes, and discovery of new activity
classes. We anticipate that the proposed framework will lead to new insights about human activity and its impact
on health outcomes. This interdisciplinary project builds on several research activities of the team. Our past work
includes: a) new mathematical developments for computing statistics on time-series data viewed as elements of
a function-spaces, b) algorithms for activity recognition that integrate the function-space techniques, and c) data
from long-term observational studies of human activity from multimodal sensors. The new work we propose
addresses the unique mathematical and computational challenges posed by densely multimodal, long-term,
densely-sampled Iifelog big-data in a comprehensive framework. The fusion of ideas from human activity
modeling, functional-analysis, geometric metrics, and algorithmic machine learning, present unique opportunities
for fundamental advancement of the state-of-the-art in objective measurement and quantification of behavioral
markers from wearable devices. The proposed approach also brings to fore: a) new mathematical developments
of elastic metrics over multi-modal time-series data, b) comparing sequences evolving on different feature
manifolds, c) estimation of quasi- periodicities, d) and a new generation of machine-learning and pattern
discovery algorithms. The mathematical and algorithmic tools proposed have the potential to significantly
advance how wearable data from contemporary devices with high-sampling rates and large storage capabilities
are represented, processed, and transformed into accurate inferences about human activity. Wearable devices
are becoming more widely adopted in recent years for general health and recreational uses by the broad
populace. This research will result in improved algorithms to process the data available from such wearable
devices. The long-term goal of the research is to enable personalized home-based physical activity regimens for
conditions such as stroke and diabetes.
可穿戴设备(例如,加速度计)和个人技术(例如,
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
PI-Net: A Deep Learning Approach to Extract Topological Persistence Images.
- DOI:10.1109/cvprw50498.2020.00425
- 发表时间:2020-06
- 期刊:
- 影响因子:0
- 作者:Som A;Choi H;Ramamurthy KN;Buman MP;Turaga P
- 通讯作者:Turaga P
ROBUST TIME SERIES RECOVERY AND CLASSIFICATION USING TEST-TIME NOISE SIMULATOR NETWORKS.
- DOI:10.1109/icassp49357.2023.10096888
- 发表时间:2023-06
- 期刊:
- 影响因子:0
- 作者:Jeon, Eun Som;Lohit, Suhas;Anirudh, Rushil;Turaga, Pavan
- 通讯作者:Turaga, Pavan
Role of Data Augmentation Strategies in Knowledge Distillation for Wearable Sensor Data.
- DOI:10.1109/jiot.2021.3139038
- 发表时间:2022-07-15
- 期刊:
- 影响因子:10.6
- 作者:Jeon, Eun Som;Som, Anirudh;Shukla, Ankita;Hasanaj, Kristina;Buman, Matthew P.;Turaga, Pavan
- 通讯作者:Turaga, Pavan
Topological Knowledge Distillation for Wearable Sensor Data.
- DOI:10.1109/ieeeconf56349.2022.10052019
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:Jeon, Eun Som;Choi, Hongjun;Shukla, Ankita;Wang, Yuan;Buman, Matthew P.;Turaga, Pavan
- 通讯作者:Turaga, Pavan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pavan Turaga其他文献
Pavan Turaga的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pavan Turaga', 18)}}的其他基金
Dense life-log health analytics from wearable senors using functional analysis and Riemannian geometry
使用功能分析和黎曼几何对可穿戴传感器进行密集生命日志健康分析
- 批准号:
10023190 - 财政年份:2019
- 资助金额:
$ 31.66万 - 项目类别:
Dense life-log health analytics from wearable senors using functional analysis and Riemannian geometry
使用功能分析和黎曼几何对可穿戴传感器进行密集的生命日志健康分析
- 批准号:
9903672 - 财政年份:2019
- 资助金额:
$ 31.66万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 31.66万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 31.66万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 31.66万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 31.66万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 31.66万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 31.66万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 31.66万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 31.66万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 31.66万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 31.66万 - 项目类别:
Research Grant














{{item.name}}会员




