Dense life-log health analytics from wearable senors using functional analysis and Riemannian geometry
使用功能分析和黎曼几何对可穿戴传感器进行密集的生命日志健康分析
基本信息
- 批准号:9903672
- 负责人:
- 金额:$ 31.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-23 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerometerActivity CyclesAlgorithmsArrhythmiaAwarenessBehaviorBehavior monitoringBig DataBody TemperatureCellular PhoneChemotherapy-Oncologic ProcedureCollectionCoupledDataData AnalysesData CollectionDevicesDustEncapsulatedEnergy MetabolismGeometryGleanGoalsGrowthHealthHealth StatusHealthcareHeartHeart RateHome environmentHourHumanIndividualLeadLifeLocationMathematicsMedicalMethodsModelingMonitorMovementNational Institute of General Medical SciencesOutcomeParticipantPatternPeriodicityPhysical activityPopulationResearchResearch Project GrantsRestSamplingSeriesSignal TransductionSwimmingSystemTechniquesTimeUnited States National Institutes of HealthVisionWalkingWaterWorkbasecircadiandesigndiarieshealth related quality of lifeheart rate monitorinsightinterestmathematical methodsmetastatic colorectalmultimodalitypersonalized interventionpost strokeprogramssensorstatisticstoolwearable device
项目摘要
The growth and acceptance of wearable devices (e.g., accelerometers) and personal technologies (e.g.,
smartphones), coupled with larger storage capacities, waterproofing, and more unobtrusive wear locations, has
made long-term monitoring of behaviors throughout the 24-hour spectrum more feasible. Wearable devices
relevant for human activity (e.g., GENEActiv accelerometer) contain several complementary sensors
(accelerometers, gyro, heart- rate monitor etc.) and sample at high rates (e.g., 100Hz for accelerometer). These
high-sampling rates and the long duration of capture result in life-log data that truly qualifies as multimodal and
big time-series data. The challenges and opportunities involved in fully harvesting these types of data, for widely
applicable interventions, suggest that an interdisciplinary approach spanning mathematical sciences, signal
processing, and health is needed. Our innovation includes the use of functional-data analysis tools to represent
and process the dense time-series data. Functional data analysis is then integrated into machine learning and
pattern discovery algorithms for activity classification, prediction of attributes, and discovery of new activity
classes. We anticipate that the proposed framework will lead to new insights about human activity and its impact
on health outcomes. This interdisciplinary project builds on several research activities of the team. Our past work
includes: a) new mathematical developments for computing statistics on time-series data viewed as elements of
a function-spaces, b) algorithms for activity recognition that integrate the function-space techniques, and c) data
from long-term observational studies of human activity from multimodal sensors. The new work we propose
addresses the unique mathematical and computational challenges posed by densely multimodal, long-term,
densely-sampled Iifelog big-data in a comprehensive framework. The fusion of ideas from human activity
modeling, functional-analysis, geometric metrics, and algorithmic machine learning, present unique opportunities
for fundamental advancement of the state-of-the-art in objective measurement and quantification of behavioral
markers from wearable devices. The proposed approach also brings to fore: a) new mathematical developments
of elastic metrics over multi-modal time-series data, b) comparing sequences evolving on different feature
manifolds, c) estimation of quasi- periodicities, d) and a new generation of machine-learning and pattern
discovery algorithms. The mathematical and algorithmic tools proposed have the potential to significantly
advance how wearable data from contemporary devices with high-sampling rates and large storage capabilities
are represented, processed, and transformed into accurate inferences about human activity. Wearable devices
are becoming more widely adopted in recent years for general health and recreational uses by the broad
populace. This research will result in improved algorithms to process the data available from such wearable
devices. The long-term goal of the research is to enable personalized home-based physical activity regimens for
conditions such as stroke and diabetes.
可穿戴设备(例如,加速计)和个人技术(例如,
智能手机),再加上更大的存储容量、防水和更不显眼的穿戴位置,具有
使对整个24小时频谱的行为进行长期监控变得更加可行。可穿戴设备
与人类活动相关的(例如,GENEActiv加速计)包含几个互补的传感器
(加速计、陀螺仪、心率监测器等)并以高速率采样(例如,加速度计为100赫兹)。这些
高采样率和较长的捕获持续时间导致生活日志数据真正符合多模式和
时间序列大数据。全面收集这些类型的数据所涉及的挑战和机遇
适用的干预措施表明,跨越数学科学的跨学科方法,信号
加工,健康是需要的。我们的创新包括使用功能数据分析工具来表示
并对密集的时间序列数据进行处理。然后将功能性数据分析集成到机器学习中,并
用于活动分类、属性预测和新活动发现的模式发现算法
上课。我们预计,拟议的框架将导致对人类活动及其影响的新认识。
对健康结果的影响。这个跨学科项目建立在团队的几项研究活动的基础上。我们过去的工作
包括:a)在计算被视为下列要素的时间序列数据统计方面的新数学进展
A函数空间,b)集成函数空间技术的活动识别算法,以及c)数据
来自多模式传感器对人类活动的长期观察研究。我们提出的新工作
解决了密集的多模式、长期、
全面框架中的密集采样生活日志大数据。人类活动中思想的融合
建模、功能分析、几何度量和算法机器学习提供了独特的机会
在客观测量和行为量化方面取得了根本性的进步
可穿戴设备上的标记。拟议的方法还突出了:a)新的数学发展
多模式时间序列数据上的弹性度量,b)比较在不同特征上演化的序列
流形,c)准周期估计,d)和新一代机器学习和模式
发现算法。提出的数学和算法工具有可能显著地
以高采样率和大存储容量提升来自当代设备的可穿戴数据
被表示、处理并转换成关于人类活动的准确推论。可穿戴设备
近年来,越来越多的人将其用于一般健康和娱乐用途
民众。这项研究将导致改进的算法,以处理从这种可穿戴设备获得的数据
设备。这项研究的长期目标是实现个性化的基于家庭的体力活动养生法
中风和糖尿病等病症。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pavan Turaga其他文献
Pavan Turaga的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pavan Turaga', 18)}}的其他基金
Dense life-log health analytics from wearable senors using functional analysis and Riemannian geometry
使用功能分析和黎曼几何对可穿戴传感器进行密集生命日志健康分析
- 批准号:
10023190 - 财政年份:2019
- 资助金额:
$ 31.64万 - 项目类别:
Dense life-log health analytics from wearable senors using functional analysis and Riemannian geometry
使用功能分析和黎曼几何对可穿戴传感器进行密集生命日志健康分析
- 批准号:
10475017 - 财政年份:2019
- 资助金额:
$ 31.64万 - 项目类别:
相似海外基金
The role of 24-hour activity cycles in preserving cognitive function and preventing Alzheimer's disease and related dementias
24 小时活动周期在保护认知功能和预防阿尔茨海默病及相关痴呆方面的作用
- 批准号:
10455800 - 财政年份:2022
- 资助金额:
$ 31.64万 - 项目类别:
24-hour Activity Cycles to Optimize Cognitive Resilience to Alzheimer's Disease in African Americans: The Jackson Heart Study
24 小时活动周期可优化非裔美国人对阿尔茨海默病的认知能力:杰克逊心脏研究
- 批准号:
10619020 - 财政年份:2020
- 资助金额:
$ 31.64万 - 项目类别:
24-hour Activity Cycles to Optimize Cognitive Resilience to Alzheimer's Disease in African Americans: The Jackson Heart Study
24 小时活动周期可优化非裔美国人对阿尔茨海默病的认知能力:杰克逊心脏研究
- 批准号:
10261464 - 财政年份:2020
- 资助金额:
$ 31.64万 - 项目类别:
24-hour Activity Cycles to Optimize Cognitive Resilience to Alzheimer's Disease in African Americans: The Jackson Heart Study
24 小时活动周期可优化非裔美国人对阿尔茨海默病的认知能力:杰克逊心脏研究
- 批准号:
10410567 - 财政年份:2020
- 资助金额:
$ 31.64万 - 项目类别:
Magnetic Evolution of Sun-like Activity Cycles
类太阳活动周期的磁演化
- 批准号:
1812634 - 财政年份:2018
- 资助金额:
$ 31.64万 - 项目类别:
Continuing Grant
Stellar and Solar Magnetic Activity Cycles
恒星和太阳磁活动周期
- 批准号:
0742144 - 财政年份:2008
- 资助金额:
$ 31.64万 - 项目类别:
Continuing Grant
Stellar and Solar Magnetic Activity Cycles
恒星和太阳磁活动周期
- 批准号:
0447159 - 财政年份:2004
- 资助金额:
$ 31.64万 - 项目类别:
Continuing Grant
Stellar and Solar Magnetic Activity Cycles
恒星和太阳磁活动周期
- 批准号:
0103883 - 财政年份:2001
- 资助金额:
$ 31.64万 - 项目类别:
Continuing Grant
Stellar and Solar Magnetic Activity Cycles
恒星和太阳磁活动周期
- 批准号:
9731636 - 财政年份:1998
- 资助金额:
$ 31.64万 - 项目类别:
Continuing Grant
Stellar and Solar Magnetic Activity Cycles
恒星和太阳磁活动周期
- 批准号:
9420044 - 财政年份:1995
- 资助金额:
$ 31.64万 - 项目类别:
Continuing Grant