Dense life-log health analytics from wearable senors using functional analysis and Riemannian geometry
使用功能分析和黎曼几何对可穿戴传感器进行密集的生命日志健康分析
基本信息
- 批准号:9903672
- 负责人:
- 金额:$ 31.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-23 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerometerActivity CyclesAlgorithmsArrhythmiaAwarenessBehaviorBehavior monitoringBig DataBody TemperatureCellular PhoneChemotherapy-Oncologic ProcedureCollectionCoupledDataData AnalysesData CollectionDevicesDustEncapsulatedEnergy MetabolismGeometryGleanGoalsGrowthHealthHealth StatusHealthcareHeartHeart RateHome environmentHourHumanIndividualLeadLifeLocationMathematicsMedicalMethodsModelingMonitorMovementNational Institute of General Medical SciencesOutcomeParticipantPatternPeriodicityPhysical activityPopulationResearchResearch Project GrantsRestSamplingSeriesSignal TransductionSwimmingSystemTechniquesTimeUnited States National Institutes of HealthVisionWalkingWaterWorkbasecircadiandesigndiarieshealth related quality of lifeheart rate monitorinsightinterestmathematical methodsmetastatic colorectalmultimodalitypersonalized interventionpost strokeprogramssensorstatisticstoolwearable device
项目摘要
The growth and acceptance of wearable devices (e.g., accelerometers) and personal technologies (e.g.,
smartphones), coupled with larger storage capacities, waterproofing, and more unobtrusive wear locations, has
made long-term monitoring of behaviors throughout the 24-hour spectrum more feasible. Wearable devices
relevant for human activity (e.g., GENEActiv accelerometer) contain several complementary sensors
(accelerometers, gyro, heart- rate monitor etc.) and sample at high rates (e.g., 100Hz for accelerometer). These
high-sampling rates and the long duration of capture result in life-log data that truly qualifies as multimodal and
big time-series data. The challenges and opportunities involved in fully harvesting these types of data, for widely
applicable interventions, suggest that an interdisciplinary approach spanning mathematical sciences, signal
processing, and health is needed. Our innovation includes the use of functional-data analysis tools to represent
and process the dense time-series data. Functional data analysis is then integrated into machine learning and
pattern discovery algorithms for activity classification, prediction of attributes, and discovery of new activity
classes. We anticipate that the proposed framework will lead to new insights about human activity and its impact
on health outcomes. This interdisciplinary project builds on several research activities of the team. Our past work
includes: a) new mathematical developments for computing statistics on time-series data viewed as elements of
a function-spaces, b) algorithms for activity recognition that integrate the function-space techniques, and c) data
from long-term observational studies of human activity from multimodal sensors. The new work we propose
addresses the unique mathematical and computational challenges posed by densely multimodal, long-term,
densely-sampled Iifelog big-data in a comprehensive framework. The fusion of ideas from human activity
modeling, functional-analysis, geometric metrics, and algorithmic machine learning, present unique opportunities
for fundamental advancement of the state-of-the-art in objective measurement and quantification of behavioral
markers from wearable devices. The proposed approach also brings to fore: a) new mathematical developments
of elastic metrics over multi-modal time-series data, b) comparing sequences evolving on different feature
manifolds, c) estimation of quasi- periodicities, d) and a new generation of machine-learning and pattern
discovery algorithms. The mathematical and algorithmic tools proposed have the potential to significantly
advance how wearable data from contemporary devices with high-sampling rates and large storage capabilities
are represented, processed, and transformed into accurate inferences about human activity. Wearable devices
are becoming more widely adopted in recent years for general health and recreational uses by the broad
populace. This research will result in improved algorithms to process the data available from such wearable
devices. The long-term goal of the research is to enable personalized home-based physical activity regimens for
conditions such as stroke and diabetes.
可穿戴设备的增长和接受度(例如,加速计)和个人技术(例如,
智能手机),加上更大的存储容量,防水,更不显眼的磨损位置,
使得在24小时范围内长期监测行为变得更加可行。可穿戴设备
与人类活动相关(例如,GENEActiv加速计)包含几个互补传感器
(加速计、陀螺仪、心率监测器等)并且以高速率采样(例如,加速度计为100 Hz)。这些
高采样率和长时间的捕获导致生命日志数据真正符合多模态,
大的时间序列数据。充分收集这些类型的数据所涉及的挑战和机遇,
适用的干预措施,建议跨学科的方法跨越数学科学,信号
加工和健康是必需的。我们的创新包括使用函数数据分析工具来表示
并处理密集的时间序列数据。然后,功能数据分析被集成到机器学习中,
用于活动分类、属性预测和新活动发现的模式发现算法
班我们预计,拟议的框架将导致对人类活动及其影响的新见解
对健康的影响。这个跨学科项目建立在团队的几项研究活动之上。我们过去的工作
包括:(a)用于计算被视为下列要素的时间序列数据的统计数据的数学新发展:
a)功能空间,B)集成功能空间技术的活动识别算法,以及c)数据
从多模态传感器对人类活动的长期观察研究中获得的。我们提出的新工作
解决了由密集的多模态,长期,
全面框架中的密集采样Iifelog大数据。来自人类活动的思想融合
建模、功能分析、几何度量和算法机器学习提供了独特的机会
在客观测量和量化行为方面的最先进技术的根本进步
来自可穿戴设备的标记。所提出的方法也带来了脱颖而出:a)新的数学发展
多模态时间序列数据上的弹性度量,B)比较在不同特征上演化的序列
流形,c)准周期估计,d)和新一代的机器学习和模式
发现算法提出的数学和算法工具有可能显着
推进如何从具有高采样率和大存储能力的现代设备中获取可穿戴数据
被表示、处理并转化为关于人类活动的准确推断。可穿戴设备
近年来越来越广泛地被广泛用于一般健康和娱乐用途,
民众这项研究将导致改进的算法来处理从这种可穿戴设备中获得的数据。
装置.这项研究的长期目标是使个性化的家庭体育活动方案,
如中风和糖尿病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pavan Turaga其他文献
Pavan Turaga的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pavan Turaga', 18)}}的其他基金
Dense life-log health analytics from wearable senors using functional analysis and Riemannian geometry
使用功能分析和黎曼几何对可穿戴传感器进行密集生命日志健康分析
- 批准号:
10023190 - 财政年份:2019
- 资助金额:
$ 31.64万 - 项目类别:
Dense life-log health analytics from wearable senors using functional analysis and Riemannian geometry
使用功能分析和黎曼几何对可穿戴传感器进行密集生命日志健康分析
- 批准号:
10475017 - 财政年份:2019
- 资助金额:
$ 31.64万 - 项目类别:
相似海外基金
The role of 24-hour activity cycles in preserving cognitive function and preventing Alzheimer's disease and related dementias
24 小时活动周期在保护认知功能和预防阿尔茨海默病及相关痴呆方面的作用
- 批准号:
10455800 - 财政年份:2022
- 资助金额:
$ 31.64万 - 项目类别:
24-hour Activity Cycles to Optimize Cognitive Resilience to Alzheimer's Disease in African Americans: The Jackson Heart Study
24 小时活动周期可优化非裔美国人对阿尔茨海默病的认知能力:杰克逊心脏研究
- 批准号:
10619020 - 财政年份:2020
- 资助金额:
$ 31.64万 - 项目类别:
24-hour Activity Cycles to Optimize Cognitive Resilience to Alzheimer's Disease in African Americans: The Jackson Heart Study
24 小时活动周期可优化非裔美国人对阿尔茨海默病的认知能力:杰克逊心脏研究
- 批准号:
10261464 - 财政年份:2020
- 资助金额:
$ 31.64万 - 项目类别:
24-hour Activity Cycles to Optimize Cognitive Resilience to Alzheimer's Disease in African Americans: The Jackson Heart Study
24 小时活动周期可优化非裔美国人对阿尔茨海默病的认知能力:杰克逊心脏研究
- 批准号:
10410567 - 财政年份:2020
- 资助金额:
$ 31.64万 - 项目类别:
Magnetic Evolution of Sun-like Activity Cycles
类太阳活动周期的磁演化
- 批准号:
1812634 - 财政年份:2018
- 资助金额:
$ 31.64万 - 项目类别:
Continuing Grant
Stellar and Solar Magnetic Activity Cycles
恒星和太阳磁活动周期
- 批准号:
0742144 - 财政年份:2008
- 资助金额:
$ 31.64万 - 项目类别:
Continuing Grant
Stellar and Solar Magnetic Activity Cycles
恒星和太阳磁活动周期
- 批准号:
0447159 - 财政年份:2004
- 资助金额:
$ 31.64万 - 项目类别:
Continuing Grant
Stellar and Solar Magnetic Activity Cycles
恒星和太阳磁活动周期
- 批准号:
0103883 - 财政年份:2001
- 资助金额:
$ 31.64万 - 项目类别:
Continuing Grant
Stellar and Solar Magnetic Activity Cycles
恒星和太阳磁活动周期
- 批准号:
9731636 - 财政年份:1998
- 资助金额:
$ 31.64万 - 项目类别:
Continuing Grant
Stellar and Solar Magnetic Activity Cycles
恒星和太阳磁活动周期
- 批准号:
9420044 - 财政年份:1995
- 资助金额:
$ 31.64万 - 项目类别:
Continuing Grant