Dense life-log health analytics from wearable senors using functional analysis and Riemannian geometry
使用功能分析和黎曼几何对可穿戴传感器进行密集生命日志健康分析
基本信息
- 批准号:10023190
- 负责人:
- 金额:$ 31.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-23 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerometerAddressAdoptedAlgorithmic SoftwareAlgorithmsBehavior monitoringBehavioralBig DataCellular PhoneClassificationCoupledDataData AnalysesDevelopmentDevicesDiabetes MellitusElementsGenerationsGeometryGoalsGrowthHarvestHealthHome environmentHourHuman ActivitiesInterventionLifeLocationMachine LearningMathematicsMeasurementModelingObservational StudyOutcomePatternPeriodicityPhysical activityProcessRegimenResearchResearch ActivitySamplingSeriesStrokeTechniquesTechnologyTimeWorkbaseheart rate monitorimprovedinnovationinsightinterdisciplinary approachmachine learning algorithmmathematical algorithmmathematical sciencesmultimodalitysensorsignal processingstatisticstoolwearable device
项目摘要
The growth and acceptance of wearable devices (e.g., accelerometers) and personal technologies (e.g.,
smartphones), coupled with larger storage capacities, waterproofing, and more unobtrusive wear locations, has
made long-term monitoring of behaviors throughout the 24-hour spectrum more feasible. Wearable devices
relevant for human activity (e.g., GENEActiv accelerometer) contain several complementary sensors
(accelerometers, gyro, heart- rate monitor etc.) and sample at high rates (e.g., 100Hz for accelerometer). These
high-sampling rates and the long duration of capture result in life-log data that truly qualifies as multimodal and
big time-series data. The challenges and opportunities involved in fully harvesting these types of data, for widely
applicable interventions, suggest that an interdisciplinary approach spanning mathematical sciences, signal
processing, and health is needed. Our innovation includes the use of functional-data analysis tools to represent
and process the dense time-series data. Functional data analysis is then integrated into machine learning and
pattern discovery algorithms for activity classification, prediction of attributes, and discovery of new activity
classes. We anticipate that the proposed framework will lead to new insights about human activity and its impact
on health outcomes. This interdisciplinary project builds on several research activities of the team. Our past work
includes: a) new mathematical developments for computing statistics on time-series data viewed as elements of
a function-spaces, b) algorithms for activity recognition that integrate the function-space techniques, and c) data
from long-term observational studies of human activity from multimodal sensors. The new work we propose
addresses the unique mathematical and computational challenges posed by densely multimodal, long-term,
densely-sampled Iifelog big-data in a comprehensive framework. The fusion of ideas from human activity
modeling, functional-analysis, geometric metrics, and algorithmic machine learning, present unique opportunities
for fundamental advancement of the state-of-the-art in objective measurement and quantification of behavioral
markers from wearable devices. The proposed approach also brings to fore: a) new mathematical developments
of elastic metrics over multi-modal time-series data, b) comparing sequences evolving on different feature
manifolds, c) estimation of quasi- periodicities, d) and a new generation of machine-learning and pattern
discovery algorithms. The mathematical and algorithmic tools proposed have the potential to significantly
advance how wearable data from contemporary devices with high-sampling rates and large storage capabilities
are represented, processed, and transformed into accurate inferences about human activity. Wearable devices
are becoming more widely adopted in recent years for general health and recreational uses by the broad
populace. This research will result in improved algorithms to process the data available from such wearable
devices. The long-term goal of the research is to enable personalized home-based physical activity regimens for
conditions such as stroke and diabetes.
可穿戴设备(例如加速度计)和个人技术的增长和接受(例如,
智能手机),再加上更大的存储能力,防水和更多不引人注目的磨损位置
在整个24小时频谱中对行为进行了长期监控。可穿戴设备
与人类活动相关(例如,基因激活加速度计)包含几个互补传感器
(加速度计,陀螺仪,心率监测器等)和较高的样品(例如,加速度计为100Hz)。这些
高采样率和较长的捕获持续时间导致生命数据的数据真正有资格作为多模式和
大时序数据。充分收获这些类型的数据所涉及的挑战和机遇,以广泛收集
适用的干预措施,表明跨学科方法跨越数学科学,信号
需要加工和健康。我们的创新包括使用功能数据分析工具来表示
并处理密集的时间序列数据。然后将功能数据分析集成到机器学习中
用于活动分类,属性预测和发现新活动的模式发现算法
课程。我们预计拟议的框架将导致有关人类活动及其影响的新见解
关于健康结果。这个跨学科项目建立在团队的几项研究活动的基础上。我们过去的工作
包括:a)计算时间序列数据的新数学发展,该数据被视为元素
一个功能空间,b)用于整合功能空间技术的活动识别算法,c)数据
从多模式传感器对人类活动的长期观察研究。我们建议的新作品
解决了密集的多模式,长期的独特数学和计算挑战
在一个全面的框架中,密集采样的iifelog big-data。人类活动的思想融合
建模,功能分析,几何指标和算法机器学习,提出了独特的机会
为了在客观测量和量化行为方面的基本进步
可穿戴设备的标记。提出的方法还带来了:a)新的数学发展
多模式时间序列数据上的弹性指标,b)比较在不同特征上演变的序列
歧管,c)准周期的估计,d)和新一代的机器学习和模式
发现算法。提出的数学和算法工具具有显着的潜力
提高具有高采样率和较大存储功能的现代设备的可穿戴数据
表示,处理并转化为有关人类活动的准确推论。可穿戴设备
近年来,由于广泛的一般健康和娱乐用途,人们变得越来越广泛地采用
民众。这项研究将导致改进的算法来处理此类可穿戴的可用数据
设备。该研究的长期目标是实现个性化的家庭体育锻炼方案
中风和糖尿病等疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pavan Turaga其他文献
Pavan Turaga的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pavan Turaga', 18)}}的其他基金
Dense life-log health analytics from wearable senors using functional analysis and Riemannian geometry
使用功能分析和黎曼几何对可穿戴传感器进行密集生命日志健康分析
- 批准号:
10475017 - 财政年份:2019
- 资助金额:
$ 31.17万 - 项目类别:
Dense life-log health analytics from wearable senors using functional analysis and Riemannian geometry
使用功能分析和黎曼几何对可穿戴传感器进行密集的生命日志健康分析
- 批准号:
9903672 - 财政年份:2019
- 资助金额:
$ 31.17万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of the OpiAID strength band platform
OpiAID 力量带平台的开发
- 批准号:
10684399 - 财政年份:2023
- 资助金额:
$ 31.17万 - 项目类别:
Making Healthy Habits Stick: Extended Contact Interventions to Promote Long Term Physical Activity in African American Cancer Survivors
养成健康习惯:延长接触干预措施以促进非裔美国癌症幸存者的长期身体活动
- 批准号:
10821052 - 财政年份:2023
- 资助金额:
$ 31.17万 - 项目类别:
The Together Everyone Achieves More Physical Activity Trial (TEAM-PA)
“大家一起实现更多体育活动”试验 (TEAM-PA)
- 批准号:
10826117 - 财政年份:2023
- 资助金额:
$ 31.17万 - 项目类别:
Muscle Fatigue's Impact on Gait Mechanics and Neuromuscular Control in Knee Osteoarthritis
肌肉疲劳对膝骨关节炎步态力学和神经肌肉控制的影响
- 批准号:
10676554 - 财政年份:2023
- 资助金额:
$ 31.17万 - 项目类别:
Peripheral Limitations in Pulmonary Hypertension and Effects of Muscle Training
肺动脉高压的外周局限性和肌肉训练的影响
- 批准号:
10661187 - 财政年份:2023
- 资助金额:
$ 31.17万 - 项目类别: