Improving Response to Malaria Outbreaks in Amazon-Basin Countries
改善亚马逊流域国家对疟疾疫情的应对能力
基本信息
- 批准号:10477933
- 负责人:
- 金额:$ 62.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AcademiaAddressAffectAreaBayesian ModelingBehavioralBorder CommunityBrazilCase StudyCensusesClimateCollaborationsColombiaCommunicable DiseasesCommunitiesCommunity NetworksComplementCountryDataData CollectionDecentralizationDetectionDevelopmentDiseaseDisease OutbreaksEconomicsEcuadorEcuadorianEcuadorian AmazonEffectiveness of InterventionsEl Nino southern oscillationEventFundingGeographyGoalsGovernmentHealthHealth systemHealthcareIncidenceInfrastructureInternal MigrationsInternationalInternational MigrationsInterventionInterviewKnowledgeMalariaMeteorologyModelingMorbidity - disease rateNative-BornPan American Health OrganizationPathway AnalysisPatternPerformancePeruPoliticsPopulationProbabilityProphylactic treatmentReportingResearchResourcesRiskRoleRouteRuralRural PopulationSocial NetworkSourceSouth AmericaSpecificityStatistical ModelsStructureSurveysSystemTechnical ExpertiseTestingTimeTransportationUnited States National Aeronautics and Space AdministrationVector EcologyVenezuelaVulnerable PopulationsWithdrawalbasecomparison interventiondata infrastructureexperienceextreme weatherhydrologyimprovedindexingindigenous communityinformantinnovationland covermalaria transmissionmeteorological datamigrationoutbreak predictionpreventive interventionresponserisk sharingsocialsocioeconomicsspatiotemporalsuccesssurveillance datatransmission processvector management strategies
项目摘要
Abstract
The objective of this proposal is to improve malaria response in the Amazon by enhancing knowledge on when
where, and which targeted interventions will have the greatest impact. There is a critical need for improved
malaria control—since 2011, no region in the world has experienced a larger increase in malaria than the
Amazon. Several events contributed to this rise: extreme weather (i.e., El Nino), expanded resource extraction,
political unrest in Venezuela, and withdrawal of the Global Fund from South America. The unprecedented malaria
resurgence has been particularly high near border regions where migration and poor health care facilitate
transmission. The current surveillance system has a 4-week delay in cases reported, which is completely
inadequate, resulting in reactive vs. preventive intervention strategies. To respond, our team developed a Malaria
Early Warning System (MEWS) with NASA support for Loreto, Peru, where over 90% of malaria cases in Peru
occur. The MEWS forecasts outbreaks with >90% sensitivity and >75% specificity 8-12 weeks in advance in sub-
regions (EcoRegions using unobserved component models [UCM]) and districts (via spatial Bayesian models),
and fits community-based agent based models (ABMs) to evaluate behavioral factors associated with
transmission. However, gaps remain: our MEWS has unknown performance outside of Peru; it does not
incorporate migration; forecasts are not downscaled for hotspot detection; forecasting performance is poor near
border regions; and the models are not integrated across scales. We address these gaps with three aims: (1)
Evaluate MEWS expansion to the Ecuadorian and Brazilian Amazon and evaluate sub-district downscaled
forecasts; (2) Evaluate the relationship between infrastructure, socioeconomic networks, and migration across
international borders with malaria incidence; and (3) Evaluate scenarios of potential malaria interventions along
borders to reduce malaria risk in both countries using ABMs. This project will significantly improve current
surveillance efforts by providing both current estimates and forecasts of malaria using state-of-the-art climate,
hydrology and land cover models. The MEWS is expanded by obtaining surveillance and population data from
Ecuador and Brazil, and merging these with hydro-meteorological data. New EcoRegions that ignore
administrative borders are defined and UCMs are applied. Spatial Bayesian models are used to estimate both
district- and downscaled sub-district level malaria incidence. Infrastructure data are obtained from public sources
and a social network analysis (and data collection) will be conducted in communities along border regions (Brazil-
Peru, Ecuador-Peru). We evaluate malaria incidence along identified network structures up to 300km away from
borders and test simulated intervention scenarios in border communities to evaluate effects on malaria
transmission. This proposal responds to the WHO 2016-2030 Global Technical Strategy for Malaria and the
recent initiatives by the Pan American Health Organization calling for improved malaria surveillance as a core
intervention to improve response to high malaria burden.
抽象的
该提案的目的是通过增强对何时发生疟疾的了解来改善亚马逊地区的疟疾应对措施
在哪里以及哪些有针对性的干预措施将产生最大的影响。迫切需要改进
疟疾控制——自 2011 年以来,世界上没有哪个地区的疟疾增幅比
亚马逊。有几个事件导致了这一增长:极端天气(即厄尔尼诺现象)、扩大资源开采、
委内瑞拉政局动荡,全球基金从南美洲撤出。史无前例的疟疾
在移民和医疗条件差的边境地区附近,疫情死灰复燃的几率特别高
传播。目前的监测系统报告病例有4周的延迟,这完全是
不充分,导致采取反应性干预策略与预防性干预策略。为了应对这种情况,我们的团队开发了一种疟疾
NASA 支持秘鲁洛雷托的早期预警系统 (MEWS),秘鲁 90% 以上的疟疾病例都发生在该地区
发生。 MEWS 提前 8-12 周以 >90% 的敏感性和 >75% 的特异性预测疫情暴发
区域(使用未观测组件模型 [UCM] 的 EcoRegions)和地区(通过空间贝叶斯模型),
并拟合基于社区的代理模型(ABM)来评估与
传播。然而,差距仍然存在:我们的 MEWS 在秘鲁以外的地区表现尚不清楚;它没有
纳入移民;热点检测不会缩小预测范围;附近的预测性能很差
边境地区;并且模型没有跨尺度集成。我们通过三个目标来解决这些差距:(1)
评估 MEWS 向厄瓜多尔和巴西亚马逊的扩张并评估缩小规模的分区
预测; (2) 评估基础设施、社会经济网络和跨地区移民之间的关系
疟疾发病率的国际边界; (3) 评估潜在疟疾干预措施的情景
两国使用反导措施来减少疟疾风险。该项目将显着改善目前
通过使用最先进的气候提供当前的疟疾估计和预测来开展监测工作,
水文和土地覆盖模型。通过从以下机构获取监测和人口数据,MEWS 得以扩展:
厄瓜多尔和巴西,并将这些数据与水文气象数据合并。忽略的新生态区域
界定行政边界并应用 UCM。空间贝叶斯模型用于估计
区级和分区级疟疾发病率下降。基础设施数据来自公共来源
并将在边境地区(巴西-
秘鲁、厄瓜多尔-秘鲁)。我们沿着已确定的网络结构评估疟疾发病率,最远可达 300 公里
边境并测试边境社区的模拟干预场景,以评估对疟疾的影响
传播。该提案响应了世界卫生组织 2016-2030 年全球疟疾技术战略和
泛美卫生组织最近发起的倡议呼吁以改善疟疾监测为核心
采取干预措施,改善对疟疾高负担的应对措施。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
WILLIAM KUANG-YAO PAN其他文献
WILLIAM KUANG-YAO PAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('WILLIAM KUANG-YAO PAN', 18)}}的其他基金
Improving Response to Malaria Outbreaks in Amazon-Basin Countries
改善亚马逊流域国家对疟疾疫情的应对能力
- 批准号:
10682435 - 财政年份:2021
- 资助金额:
$ 62.92万 - 项目类别:
Impact of El Nino on Environmental Mercury and Human Exposure
厄尔尼诺现象对环境汞和人体接触的影响
- 批准号:
9155278 - 财政年份:2016
- 资助金额:
$ 62.92万 - 项目类别:
Population-environment dynamics influencing malaria risk in the Peruvian Amazon
影响秘鲁亚马逊地区疟疾风险的人口环境动态
- 批准号:
7928233 - 财政年份:2008
- 资助金额:
$ 62.92万 - 项目类别:
Population-environment dynamics influencing malaria risk in the Peruvian Amazon
影响秘鲁亚马逊地区疟疾风险的人口环境动态
- 批准号:
8321579 - 财政年份:2008
- 资助金额:
$ 62.92万 - 项目类别:
Population-environment dynamics influencing malaria risk in the Peruvian Amazon
影响秘鲁亚马逊地区疟疾风险的人口环境动态
- 批准号:
8303594 - 财政年份:2008
- 资助金额:
$ 62.92万 - 项目类别:
Population-environment dynamics influencing malaria risk in the Peruvian Amazon
影响秘鲁亚马逊地区疟疾风险的人口环境动态
- 批准号:
7385515 - 财政年份:2008
- 资助金额:
$ 62.92万 - 项目类别:
Population-environment dynamics influencing malaria risk in the Peruvian Amazon
影响秘鲁亚马逊地区疟疾风险的人口环境动态
- 批准号:
8137886 - 财政年份:2008
- 资助金额:
$ 62.92万 - 项目类别:
Population-environment dynamics influencing malaria risk in the Peruvian Amazon
影响秘鲁亚马逊地区疟疾风险的人口环境动态
- 批准号:
7672561 - 财政年份:2008
- 资助金额:
$ 62.92万 - 项目类别:
Modeling population-environment dynamics in the Ecuadorian Amazon
厄瓜多尔亚马逊地区人口-环境动态建模
- 批准号:
7197716 - 财政年份:2007
- 资助金额:
$ 62.92万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 62.92万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 62.92万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 62.92万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 62.92万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 62.92万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 62.92万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 62.92万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 62.92万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 62.92万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 62.92万 - 项目类别:
Research Grant














{{item.name}}会员




