INTEGRATING OMICS AND QUANTITATIVE IMAGING DATA IN CO-CLINICAL TRIALS TO PREDICT TREATMENT RESPONSE IN TRIPLE NEGATIVE BREAST CANCER

在临床联合试验中整合组学和定量成像数据来预测三阴性乳腺癌的治疗反应

基本信息

  • 批准号:
    10478972
  • 负责人:
  • 金额:
    $ 62.02万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-19 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Project Summary Triple negative breast cancer (TNBC) is a very challenging disease because it is biologically aggressive, there are no targeted therapies, and, consequently, patients have poor prognosis. Although immunotherapy is promising for treating many cancers, TNBC lacks specific molecular targets, no predictive biomarkers to chemotherapy response have yet been identified, and treatment response is difficult to evaluate using current biomarker assessments. Patient-derived xenograft (PDX) models of TNBC offer the exciting opportunity of evaluating this disease in terms of molecular features (e.g., genomic copy number, whole exome sequence, and mRNA expression) to identify candidate “omic” biomarkers that best predict the ultimate response to treatment and could provide surrogate endpoints to validate novel imaging biomarkers in co-clinical trial human trails. Moreover, emerging quantitative MRI methods, such as dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) and diffusion weighted MRI (DW-MRI), contain rich physiological signals in the images for predicting treatment response, but it is challenging to integrate both animal and human data to reliably predict the treatment response. A paradigm of “co-clinical trials” is emerging in which new treatments are evaluated in animals, and the results guide treatments in clinical trials, but there is a paucity of informatics tools and resources to enable analyses in such animal-to-human work. We believe that an informatics-based methodology that integrates molecular `omics' and imaging data will propel advances in TNBC by enabling development of machine learning models to predict the response to therapies. In order to develop research resources that will encourage consensus on how quantitative imaging methods are optimized to improve the quality of imaging results for co-clinical trials, we will leverage an ongoing co-clinical trial we are undertaking to pursue the following specific aims: (1) Identify molecular biomarkers that predict response in TNBC patient-derived xenografts (PDX); (2) Identify quantitative MRI biomarkers that predict response in TNBC patient-derived xenografts; and (3) Evaluate our informatics tools in a prospective co-clinical trial. Our proposed research is significant and innovative because it leverages advances in basic cancer biology, state-of-the-art imaging technologies, and informatics methods to develop a resource to catalyze discovery in this important disease. Our PDX-based approach will provide the cancer community with a rational, iterative, combined pre-clinical and clinical methodology and supporting data resource for making progressively more refined and personalized therapeutic regimens for TNBC patients. Our methods and tools will likely also generalize to other cancers and could, therefore, substantially benefit the care of all cancer patients.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael T. Lewis其他文献

UBA1 inhibition sensitizes cancer cells to PARP inhibitors
UBA1抑制剂可使癌细胞对聚ADP核糖聚合酶(PARP)抑制剂更敏感 。
  • DOI:
    10.1016/j.xcrm.2024.101834
  • 发表时间:
    2024-12-17
  • 期刊:
  • 影响因子:
    10.600
  • 作者:
    Sharad Awasthi;Lacey E. Dobrolecki;Christina Sallas;Xudong Zhang;Yang Li;Sima Khazaei;Sumanta Ghosh;Collene R. Jeter;Jinsong Liu;Gordon B. Mills;Shannon N. Westin;Michael T. Lewis;Weiyi Peng;Anil K. Sood;Timothy A. Yap;S. Stephen Yi;Daniel J. McGrail;Nidhi Sahni
  • 通讯作者:
    Nidhi Sahni
Correction to: In Vivo Modeling of Human Breast Cancer Using Cell Line and Patient-Derived Xenografts
  • DOI:
    10.1007/s10911-022-09524-8
  • 发表时间:
    2022-06-01
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Eric P. Souto;Lacey E. Dobrolecki;Hugo Villanueva;Andrew G. Sikora;Michael T. Lewis
  • 通讯作者:
    Michael T. Lewis
ZP4: A novel target for CAR-T cell therapy in triple negative breast cancer
ZP4:三阴性乳腺癌中嵌合抗原受体 T 细胞疗法的新靶点
  • DOI:
    10.1016/j.ymthe.2025.02.029
  • 发表时间:
    2025-04-02
  • 期刊:
  • 影响因子:
    12.000
  • 作者:
    Lauren K. Somes;Jonathan T. Lei;Xinpei Yi;Diego F. Chamorro;Paul Shafer;Ahmed Z. Gad;Lacey E. Dobrolecki;Emily Madaras;Nabil Ahmed;Michael T. Lewis;Bing Zhang;Valentina Hoyos
  • 通讯作者:
    Valentina Hoyos
Next Stop, the Twilight Zone: Hedgehog Network Regulation of Mammary Gland Development
The Effects of Camera Monitoring on Police Officer Performance in Critical Incident Situations: a MILO Range Simulator Study
摄像机监控对危急事件情况下警务人员表现的影响:MILO 范围模拟器研究
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    W. Kalkhoff;Joshua W. Pollock;Matthew A. Pfeiffer;Brian A Chopko;P. Palmieri;Michael T. Lewis;Joseph Sidoti;Daniel Burrill;Jon Overton;Graem Sigelmier
  • 通讯作者:
    Graem Sigelmier

Michael T. Lewis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael T. Lewis', 18)}}的其他基金

Core-001
核心001
  • 批准号:
    10710331
  • 财政年份:
    2022
  • 资助金额:
    $ 62.02万
  • 项目类别:
Core-001
核心001
  • 批准号:
    10710333
  • 财政年份:
    2022
  • 资助金额:
    $ 62.02万
  • 项目类别:
INTEGRATING OMICS AND QUANTITATIVE IMAGING DATA IN CO-CLINICAL TRIALS TO PREDICT TREATMENT RESPONSE IN TRIPLE NEGATIVE BREAST CANCER
在临床联合试验中整合组学和定量成像数据来预测三阴性乳腺癌的治疗反应
  • 批准号:
    10688170
  • 财政年份:
    2019
  • 资助金额:
    $ 62.02万
  • 项目类别:
INTEGRATING OMICS AND QUANTITATIVE IMAGING DATA IN CO-CLINICAL TRIALS TO PREDICT TREATMENT RESPONSE IN TRIPLE NEGATIVE BREAST CANCER
在临床联合试验中整合组学和定量成像数据来预测三阴性乳腺癌的治疗反应
  • 批准号:
    10241425
  • 财政年份:
    2019
  • 资助金额:
    $ 62.02万
  • 项目类别:
INTEGRATING OMICS AND QUANTITATIVE IMAGING DATA IN CO-CLINICAL TRIALS TO PREDICT TREATMENT RESPONSE IN TRIPLE NEGATIVE BREAST CANCER
在临床联合试验中整合组学和定量成像数据来预测三阴性乳腺癌的治疗反应
  • 批准号:
    10020941
  • 财政年份:
    2019
  • 资助金额:
    $ 62.02万
  • 项目类别:
Multi-omic, Exposure-informed, Genealogical Approach (mErGE)
多组学、暴露信息、系谱方法 (mErGE)
  • 批准号:
    10370622
  • 财政年份:
    2017
  • 资助金额:
    $ 62.02万
  • 项目类别:
PDX Trial Center for Breast Cancer Therapy
PDX 乳腺癌治疗试验中心
  • 批准号:
    9446429
  • 财政年份:
    2017
  • 资助金额:
    $ 62.02万
  • 项目类别:
Research Project 2: Targetin Tumor-Initiating Cell (TIC) Heterogeneity To Overcome Chemotherapy Resistance
研究项目2:靶向肿瘤起始细胞(TIC)异质性以克服化疗耐药性
  • 批准号:
    10681678
  • 财政年份:
    2017
  • 资助金额:
    $ 62.02万
  • 项目类别:
PDX Trial Center for Breast Cancer Therapy
PDX 乳腺癌治疗试验中心
  • 批准号:
    10732947
  • 财政年份:
    2017
  • 资助金额:
    $ 62.02万
  • 项目类别:
PDX Core
PDX核心
  • 批准号:
    10732949
  • 财政年份:
    2017
  • 资助金额:
    $ 62.02万
  • 项目类别:

相似海外基金

Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
  • 批准号:
    RGPIN-2015-05926
  • 财政年份:
    2019
  • 资助金额:
    $ 62.02万
  • 项目类别:
    Discovery Grants Program - Individual
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
  • 批准号:
    RGPIN-2015-05926
  • 财政年份:
    2018
  • 资助金额:
    $ 62.02万
  • 项目类别:
    Discovery Grants Program - Individual
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
  • 批准号:
    RGPIN-2015-05926
  • 财政年份:
    2017
  • 资助金额:
    $ 62.02万
  • 项目类别:
    Discovery Grants Program - Individual
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
  • 批准号:
    RGPIN-2015-05926
  • 财政年份:
    2016
  • 资助金额:
    $ 62.02万
  • 项目类别:
    Discovery Grants Program - Individual
Event detection algorithms in decision support for animals health surveillance
动物健康监测决策支持中的事件检测算法
  • 批准号:
    385453-2009
  • 财政年份:
    2015
  • 资助金额:
    $ 62.02万
  • 项目类别:
    Collaborative Research and Development Grants
Algorithms to generate designs of potency experiments that use far fewer animals
生成使用更少动物的效力实验设计的算法
  • 批准号:
    8810865
  • 财政年份:
    2015
  • 资助金额:
    $ 62.02万
  • 项目类别:
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
  • 批准号:
    RGPIN-2015-05926
  • 财政年份:
    2015
  • 资助金额:
    $ 62.02万
  • 项目类别:
    Discovery Grants Program - Individual
Event detection algorithms in decision support for animals health surveillance
动物健康监测决策支持中的事件检测算法
  • 批准号:
    385453-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 62.02万
  • 项目类别:
    Collaborative Research and Development Grants
Development of population-level algorithms for modelling genomic variation and its impact on cellular function in animals and plants
开发群体水平算法来建模基因组变异及其对动植物细胞功能的影响
  • 批准号:
    FT110100972
  • 财政年份:
    2012
  • 资助金额:
    $ 62.02万
  • 项目类别:
    ARC Future Fellowships
Advanced computational algorithms for brain imaging studies of freely moving animals
用于自由活动动物脑成像研究的先进计算算法
  • 批准号:
    DP120103813
  • 财政年份:
    2012
  • 资助金额:
    $ 62.02万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了