INTEGRATING OMICS AND QUANTITATIVE IMAGING DATA IN CO-CLINICAL TRIALS TO PREDICT TREATMENT RESPONSE IN TRIPLE NEGATIVE BREAST CANCER
在临床联合试验中整合组学和定量成像数据来预测三阴性乳腺癌的治疗反应
基本信息
- 批准号:10688170
- 负责人:
- 金额:$ 62.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-19 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAnimalsBiological MarkersBiopsyBlood VesselsBreast Cancer PatientBreast Cancer TreatmentCancer BiologyCancer PatientCarboplatinCaringCellularityClinicalClinical TrialsCombined Modality TherapyCommunitiesConsensusCoupledDataDevelopmentDiffusion Magnetic Resonance ImagingDiseaseDisease ProgressionEvaluationFundingGenomicsGoalsHealthcareHumanImageImaging technologyImmunotherapyIn complete remissionInformaticsMachine LearningMagnetic Resonance ImagingMalignant NeoplasmsMass Spectrum AnalysisMethodologyMethodsMolecularMolecular TargetMusNeoadjuvant TherapyOnline SystemsPathologicPatient-Focused OutcomesPatient-derived xenograft models of breast cancerPatientsPhenotypePhysiologicalPrediction of Response to TherapyPrognosisProteinsRecurrenceRegimenReproducibilityResearchResearch PersonnelResource InformaticsResourcesScienceSignal TransductionSurrogate EndpointTestingTimeTreatment EfficacyTreatment ProtocolsWorkanimal dataarmbioinformatics resourcecandidate identificationchemotherapyco-clinical trialcohortcontrast enhanceddata resourcedata sharingdocetaxelexomehigh resolution imaginghuman datahuman modelimaging biomarkerimaging modalityimprovedindexinginformatics toolinnovationinterestmRNA Expressionmachine learning algorithmmachine learning modelmagnetic resonance imaging biomarkermalignant breast neoplasmmolecular markernovelonline resourceoptimal treatmentsparticipant enrollmentpatient derived xenograft modelpersonalized therapeuticpre-clinicalpreclinical trialpredicting responsepredictive markerpredictive modelingprospectivequantitative imagingrepairedresponseresponse biomarkertargeted treatmenttooltranscriptome sequencingtreatment responsetriple-negative invasive breast carcinomatumor
项目摘要
Project Summary
Triple negative breast cancer (TNBC) is a very challenging disease because it is biologically aggressive, there
are no targeted therapies, and, consequently, patients have poor prognosis. Although immunotherapy is
promising for treating many cancers, TNBC lacks specific molecular targets, no predictive biomarkers to
chemotherapy response have yet been identified, and treatment response is difficult to evaluate using current
biomarker assessments. Patient-derived xenograft (PDX) models of TNBC offer the exciting opportunity of
evaluating this disease in terms of molecular features (e.g., genomic copy number, whole exome sequence, and
mRNA expression) to identify candidate “omic” biomarkers that best predict the ultimate response to treatment
and could provide surrogate endpoints to validate novel imaging biomarkers in co-clinical trial human trails.
Moreover, emerging quantitative MRI methods, such as dynamic contrast enhanced magnetic resonance
imaging (DCE-MRI) and diffusion weighted MRI (DW-MRI), contain rich physiological signals in the images for
predicting treatment response, but it is challenging to integrate both animal and human data to reliably predict the
treatment response. A paradigm of “co-clinical trials” is emerging in which new treatments are evaluated in
animals, and the results guide treatments in clinical trials, but there is a paucity of informatics tools and resources
to enable analyses in such animal-to-human work. We believe that an informatics-based methodology that
integrates molecular `omics' and imaging data will propel advances in TNBC by enabling development of
machine learning models to predict the response to therapies. In order to develop research resources that will
encourage consensus on how quantitative imaging methods are optimized to improve the quality of imaging
results for co-clinical trials, we will leverage an ongoing co-clinical trial we are undertaking to pursue the following
specific aims: (1) Identify molecular biomarkers that predict response in TNBC patient-derived xenografts (PDX);
(2) Identify quantitative MRI biomarkers that predict response in TNBC patient-derived xenografts; and (3)
Evaluate our informatics tools in a prospective co-clinical trial. Our proposed research is significant and
innovative because it leverages advances in basic cancer biology, state-of-the-art imaging technologies, and
informatics methods to develop a resource to catalyze discovery in this important disease. Our PDX-based
approach will provide the cancer community with a rational, iterative, combined pre-clinical and clinical
methodology and supporting data resource for making progressively more refined and personalized therapeutic
regimens for TNBC patients. Our methods and tools will likely also generalize to other cancers and could,
therefore, substantially benefit the care of all cancer patients.
项目概要
三阴性乳腺癌(TNBC)是一种非常具有挑战性的疾病,因为它具有生物学侵袭性,
目前尚无靶向治疗,因此患者预后较差。虽然免疫疗法是
TNBC 有望治疗多种癌症,但缺乏特定的分子靶标,也没有预测性生物标志物
化疗反应尚未确定,治疗反应很难用目前的方法来评估
生物标志物评估。 TNBC 患者来源的异种移植(PDX)模型提供了令人兴奋的机会
从分子特征(例如基因组拷贝数、整个外显子组序列和
mRNA 表达)来识别最能预测治疗最终反应的候选“组学”生物标志物
并可以提供替代终点来验证临床联合试验人体试验中的新型成像生物标志物。
此外,新兴的定量 MRI 方法,例如动态对比增强磁共振
成像(DCE-MRI)和扩散加权磁共振成像(DW-MRI),图像中包含丰富的生理信号
预测治疗反应,但整合动物和人类数据来可靠地预测治疗反应具有挑战性
治疗反应。 “联合临床试验”的范例正在出现,其中对新疗法进行评估
动物,其结果指导临床试验中的治疗,但缺乏信息学工具和资源
以便能够对此类动物到人类的工作进行分析。我们相信基于信息学的方法
整合分子“组学”和成像数据将通过促进 TNBC 的发展来推动 TNBC 的进步
机器学习模型来预测对治疗的反应。为了开发研究资源
鼓励就如何优化定量成像方法以提高成像质量达成共识
根据联合临床试验的结果,我们将利用正在进行的联合临床试验来追求以下目标
具体目标: (1) 确定预测 TNBC 患者来源异种移植物 (PDX) 反应的分子生物标志物;
(2) 确定预测 TNBC 患者异种移植反应的定量 MRI 生物标志物;和(3)
在前瞻性联合临床试验中评估我们的信息学工具。我们提出的研究意义重大
创新是因为它利用了基础癌症生物学的进步、最先进的成像技术和
信息学方法开发资源以促进这一重要疾病的发现。我们基于 PDX 的
方法将为癌症界提供合理的、迭代的、组合的临床前和临床
方法论和支持数据资源,使治疗逐渐更加精细和个性化
TNBC 患者的治疗方案。我们的方法和工具也可能推广到其他癌症,并且可以,
因此,大大有利于所有癌症患者的护理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael T. Lewis其他文献
UBA1 inhibition sensitizes cancer cells to PARP inhibitors
UBA1抑制剂可使癌细胞对聚ADP核糖聚合酶(PARP)抑制剂更敏感 。
- DOI:
10.1016/j.xcrm.2024.101834 - 发表时间:
2024-12-17 - 期刊:
- 影响因子:10.600
- 作者:
Sharad Awasthi;Lacey E. Dobrolecki;Christina Sallas;Xudong Zhang;Yang Li;Sima Khazaei;Sumanta Ghosh;Collene R. Jeter;Jinsong Liu;Gordon B. Mills;Shannon N. Westin;Michael T. Lewis;Weiyi Peng;Anil K. Sood;Timothy A. Yap;S. Stephen Yi;Daniel J. McGrail;Nidhi Sahni - 通讯作者:
Nidhi Sahni
Correction to: In Vivo Modeling of Human Breast Cancer Using Cell Line and Patient-Derived Xenografts
- DOI:
10.1007/s10911-022-09524-8 - 发表时间:
2022-06-01 - 期刊:
- 影响因子:3.600
- 作者:
Eric P. Souto;Lacey E. Dobrolecki;Hugo Villanueva;Andrew G. Sikora;Michael T. Lewis - 通讯作者:
Michael T. Lewis
ZP4: A novel target for CAR-T cell therapy in triple negative breast cancer
ZP4:三阴性乳腺癌中嵌合抗原受体 T 细胞疗法的新靶点
- DOI:
10.1016/j.ymthe.2025.02.029 - 发表时间:
2025-04-02 - 期刊:
- 影响因子:12.000
- 作者:
Lauren K. Somes;Jonathan T. Lei;Xinpei Yi;Diego F. Chamorro;Paul Shafer;Ahmed Z. Gad;Lacey E. Dobrolecki;Emily Madaras;Nabil Ahmed;Michael T. Lewis;Bing Zhang;Valentina Hoyos - 通讯作者:
Valentina Hoyos
Next Stop, the Twilight Zone: Hedgehog Network Regulation of Mammary Gland Development
- DOI:
10.1023/b:jomg.0000037160.24731.35 - 发表时间:
2004-04-01 - 期刊:
- 影响因子:3.600
- 作者:
Michael T. Lewis;Jacqueline M. Veltmaat - 通讯作者:
Jacqueline M. Veltmaat
The Effects of Camera Monitoring on Police Officer Performance in Critical Incident Situations: a MILO Range Simulator Study
摄像机监控对危急事件情况下警务人员表现的影响:MILO 范围模拟器研究
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:1.6
- 作者:
W. Kalkhoff;Joshua W. Pollock;Matthew A. Pfeiffer;Brian A Chopko;P. Palmieri;Michael T. Lewis;Joseph Sidoti;Daniel Burrill;Jon Overton;Graem Sigelmier - 通讯作者:
Graem Sigelmier
Michael T. Lewis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael T. Lewis', 18)}}的其他基金
INTEGRATING OMICS AND QUANTITATIVE IMAGING DATA IN CO-CLINICAL TRIALS TO PREDICT TREATMENT RESPONSE IN TRIPLE NEGATIVE BREAST CANCER
在临床联合试验中整合组学和定量成像数据来预测三阴性乳腺癌的治疗反应
- 批准号:
10241425 - 财政年份:2019
- 资助金额:
$ 62.02万 - 项目类别:
INTEGRATING OMICS AND QUANTITATIVE IMAGING DATA IN CO-CLINICAL TRIALS TO PREDICT TREATMENT RESPONSE IN TRIPLE NEGATIVE BREAST CANCER
在临床联合试验中整合组学和定量成像数据来预测三阴性乳腺癌的治疗反应
- 批准号:
10020941 - 财政年份:2019
- 资助金额:
$ 62.02万 - 项目类别:
INTEGRATING OMICS AND QUANTITATIVE IMAGING DATA IN CO-CLINICAL TRIALS TO PREDICT TREATMENT RESPONSE IN TRIPLE NEGATIVE BREAST CANCER
在临床联合试验中整合组学和定量成像数据来预测三阴性乳腺癌的治疗反应
- 批准号:
10478972 - 财政年份:2019
- 资助金额:
$ 62.02万 - 项目类别:
Multi-omic, Exposure-informed, Genealogical Approach (mErGE)
多组学、暴露信息、系谱方法 (mErGE)
- 批准号:
10370622 - 财政年份:2017
- 资助金额:
$ 62.02万 - 项目类别:
Research Project 2: Targetin Tumor-Initiating Cell (TIC) Heterogeneity To Overcome Chemotherapy Resistance
研究项目2:靶向肿瘤起始细胞(TIC)异质性以克服化疗耐药性
- 批准号:
10681678 - 财政年份:2017
- 资助金额:
$ 62.02万 - 项目类别:
Targeting mitochondrial dependencies in chemo resistant triple negative breast cancer
针对化疗耐药三阴性乳腺癌的线粒体依赖性
- 批准号:
10581266 - 财政年份:2017
- 资助金额:
$ 62.02万 - 项目类别:
相似海外基金
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
- 批准号:
RGPIN-2015-05926 - 财政年份:2019
- 资助金额:
$ 62.02万 - 项目类别:
Discovery Grants Program - Individual
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
- 批准号:
RGPIN-2015-05926 - 财政年份:2018
- 资助金额:
$ 62.02万 - 项目类别:
Discovery Grants Program - Individual
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
- 批准号:
RGPIN-2015-05926 - 财政年份:2017
- 资助金额:
$ 62.02万 - 项目类别:
Discovery Grants Program - Individual
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
- 批准号:
RGPIN-2015-05926 - 财政年份:2016
- 资助金额:
$ 62.02万 - 项目类别:
Discovery Grants Program - Individual
Event detection algorithms in decision support for animals health surveillance
动物健康监测决策支持中的事件检测算法
- 批准号:
385453-2009 - 财政年份:2015
- 资助金额:
$ 62.02万 - 项目类别:
Collaborative Research and Development Grants
Algorithms to generate designs of potency experiments that use far fewer animals
生成使用更少动物的效力实验设计的算法
- 批准号:
8810865 - 财政年份:2015
- 资助金额:
$ 62.02万 - 项目类别:
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
- 批准号:
RGPIN-2015-05926 - 财政年份:2015
- 资助金额:
$ 62.02万 - 项目类别:
Discovery Grants Program - Individual
Event detection algorithms in decision support for animals health surveillance
动物健康监测决策支持中的事件检测算法
- 批准号:
385453-2009 - 财政年份:2013
- 资助金额:
$ 62.02万 - 项目类别:
Collaborative Research and Development Grants
Development of population-level algorithms for modelling genomic variation and its impact on cellular function in animals and plants
开发群体水平算法来建模基因组变异及其对动植物细胞功能的影响
- 批准号:
FT110100972 - 财政年份:2012
- 资助金额:
$ 62.02万 - 项目类别:
ARC Future Fellowships
Advanced computational algorithms for brain imaging studies of freely moving animals
用于自由活动动物脑成像研究的先进计算算法
- 批准号:
DP120103813 - 财政年份:2012
- 资助金额:
$ 62.02万 - 项目类别:
Discovery Projects














{{item.name}}会员




